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Abstract. Experiments at the Large Hadron Collider (LHC) produce tens of
petabytes of new data in ROOT format per year that need to be processed and
analysed. In the next decade, following the planned upgrades of the LHC and
its detectors, this data production rate is expected to increase at least ten-fold.
Therefore, optimizing the ROOT I/O subsystem is of critical importance to the
success of the LHC physics programme. This contribution presents ROOT’s
approach for writing data from multiple threads to a single output file in an
efficient way. Technical aspects of the implementation—the TBufferMerger
class—and programming model examples are described. Measurements of
runtime performance and the overall improvement relative to the case of serial
data writing are also discussed.

1 Introduction

Most of the tens of petabytes of new data produced each year at the Large Hadron Collider
(LHC) is stored in ROOT’s file format [1]. At the current rate, this translates to about 30
petabytes of ROOT data per year [2] that needs to be stored by physicists for later analysis.
In the next decade, a sudden increase of this rate to hundreds of petabytes is expected at the
beginning of Run 3. Since the amount of computational resources required to analyse data
is proportional to the total volume of data to be analysed, it has become clear that under the
flat or mildly increasing budget prospects for the coming years we will suffer from a shortage
of computational resources if no measures are taken to optimize all HEP software. ROOT
has a central role in HEP data analysis and as such has undergone efforts in several fronts to
increase data processing performance. Some of these efforts have been discussed before in [3].
Here we shall focus on the latest developments on parallel data writing with ROOT using the
TBufferMerger class.

2 The TBufferMerger Class

The TBufferMerger class, introduced in ROOT 6.10, allows users to write ROOT data in
parallel to a single output file. Two use cases inspired the development of TBufferMerger:
parallel writing of detector simulation and track reconstruction data, and parallel processing
of existing datasets with ROOT’s RDataFrame, for example, when applying filters, creating
derived quantities, and then saving the results to a new file for further processing.
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Since users are already familiar with ROOT’s interfaces for creating and filling ROOT
datasets, the main concern when designing TBufferMerger was to not diverge too much from
existing interfaces in order to minimize the amount of changes required to convert sequential
code to write data in parallel using the new class. ROOT already has the TMemFile class
that can be used to store files in memory, and the TFileMerger class to merge files on disk.
In the initial implementation of TBufferMerger, we adapted TMemFile to write data into a
queue that is then merged by TFileMerger in a background thread into the output file on disk.
The diagram in Figure 1 shows how this works in practice. The red dot represents a sentinel
indicating that the output file is complete and should be closed.
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Figure 1: Initial implementation of TBufferMerger. Worker threads place data in the queue,
while the output thread merges buffers one by one into the output file.
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Figure 2: Current implementation of TBufferMerger. Worker threads/tasks place data in
the queue. Upon writing its own data to the queue, each thread or task checks if a
merge should be triggered and performs the merge if necessary, without spawning
new threads or tasks in the background.

After being integrated into ROOT and tested by CMS for writing out reconstruction data
in parallel [4], it became clear that despite the performance gains, the choice of using a
background thread led to some inconveniences, like oversubscription of machines where recon-
struction jobs were running within the CMSSW framework. Therefore, the TBufferMerger
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class has undergone some improvements to integrate better with experiment’s frameworks by
being agnostic about the user’s choice for parallelism. In the current implementation, shown
schematically in Figure 2, workers (threads or tasks) place data in the queue as before, but
merging is no longer performed by a background thread. It is now performed by the workers
themselves upon demand—that is, when a worker writes to the queue, it checks if a merge
should be triggered, then performs the merge and returns to the caller if necessary. If a merge
is already in progress, the worker appends its data to the queue and continues without blocking.
Any data buffers remaining in the queue at the end (i.e. after all workers are done) are merged
by the main thread before closing the output file.

3 Programming Model

To discuss the programming model for TBufferMerger we use a simple example for gen-
erating Pythia events in parallel and saving to a ROOT file. Assuming we have a function
InitPythia() to initialize the Pythia generator, we can implement a function to generate
and save events to a given ROOT file as shown on the left of Listing 1. An adaptation of
this function to become a worker for use with the TBufferMerger class is then shown on
the right of Listing 1 for comparison. Instead of a plain TFile, we call GetFile() on
TBufferMerger, and the rest remains virtually the same as before. Listing 2 shows an exam-
ple of how to create workers from the function shown in Listing 1 using standard C++ threads.
ROOT’s own TTaskGroup class could be used to create workers using tasks instead, with
minor modifications.

https://doi.org/10.1051/epjcont/201921405037

#include <Pythia8/Pythia.h>

#include <TFile.h>
#include <TTree.h>

void InitPythia(Pythia8::Pythia*);

void pythia_tfile(TFile* f,
size_t nEvents)
{

Pythia8: :Pythia pythia;
InitPythia(&pythia);
Pythia8::Event *e = &pythia.event;

f->cdQ);
TTree t("pythia", "pythia");

t.Branch("event", &e);

for (size_t n = 0; n < nEvents; ++n) {

while (!pythia.next()); t.Fill(Q);

f->WriteQ);
15

#include <Pythia8/Pythia.h>

#include <ROOT/TBufferMerger.hxx>
#include <TTree.h>

using namespace ROOT: :Experimental;
void InitPythia(Pythia8::Pythia*);

void pythia_tbm(TBufferMerger* m,
size_t nEvents)
{

Pythia8: :Pythia pythia;
InitPythia(&pythia);
Pythia8::Event *e = &pythia.event;

auto £ = m->GetFile();
TTree t("pythia", "pythia");

t.Branch("event", &e);

for (size_t n = 0; n < nEvents; ++n) {

while (!pythia.next()); t.Fill(Q;

f->Write(Q);
i

Listing 1: Pythia event generation using TFile (left) and TBufferMerger (right).

The performance of the Pythia example code just presented is shown in Figure 3 below. In
this example, output is written to a solid-state disk (SSD), and the version of ROOT used is
a preview of version 6.16. Scaling is nearly ideal up to the number of physical cores of the
machine, but has only marginal gains with hyper-threading.
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#include "ROOT/TBufferMerger.hxx"
#include "TROOT.h"

#include <thread>
#include <vector>

using namespace ROOT::Experimental;

void pythia_tbm(TBufferMerger *m, size_t nEvents);

int main(int argc, char **argv)

{

}

size_t nEvents = 8192;
size_t nWorkers = std::thread: :hardware_concurrency();

std::string filename('pythia.root");
std::atoi(argv[1]);

std::atoi(argv([2]);
argv[3];

if (argc >= 2) nWorkers
if (argc >= 3) nEvents
if (argc >= 4) filename

size_t nEventsPerWorker = nEvents/nWorkers;
gROOT->SetBatch();

if (nWorkers > 1)
ROOT: :EnableImplicitMT (nWorkers);

TBufferMerger merger(filename.c_str(), "recreate");

std: :vector<std: :thread> workers;

for (size_t i = 0; i < nWorkers; ++i)
workers.emplace_back(pythia_tbm, &merger, nEventsPerWorker);

for (auto&& worker : workers)
worker. join(Q);

return 0;

Listing 2: Example of how to create workers for TBufferMerger using C++11 threads.
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Figure 3: Performance of Pythia event generation example on a quad-core desktop machine

(Intel Core i7 6700 CPU at 3.4GHz).

https://doi.org/10.1051/epjcont/201921405037



EPJ Web of Conferences 214, 05037 (2019) https://doi.org/10.1051/epjcont/201921405037
CHEP 2018

4 Parallel Data Writing Benchmarks

In this section we present performance benchmarks using TBufferMerger in various scenar-
ios. All benchmarks have been run on a machine with an Intel® Core™ i7-7820X processor
(8 cores, 11M Cache, up to 4.30 GHz) and 32GB of RAM, where a release build of ROOT has
been compiled with GCC 8.1 using the native instruction set (Skylake AVX-512). The output
disks used were a WD Black Hard Disk Drive (1TB), and a Samsung Evo 960 NVMe SSD
(256GB). For comparison, we have also tested writing out to system memory (using an output
file in tmpfs).

The first benchmark consists in creating a dataset of ~x1GB and saving it in parallel using
different compression algorithms and output media. The dataset contains a single column of
data with randomly generated floating point numbers in the range [0, 1]. The LZ4 compression
algorithm is the fastest but produces larger files than ZLIB and LZMA. The ZLIB algorithm has
a good balance between compression ratio and compression speed, and the LZMA algorithm
has the best compression ratio but has also the slowest compression speed. Results are shown
in Figure 4. When using LZMA compression, the benchmark is CPU-bound, and shows nearly
ideal scaling. In other configurations, performance is limited by the output bandwidth.
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Figure 4: Run time and speedup for creating and saving ~1GB of randomly generated
floating point numbers in various configurations.

In the next benchmark we increase the role of serialisation in the I/O subsystem by
generating a more complex dataset where each column consists of an std: : vector<Event>,
where Event is a class type that itself consists of 3 vectors (3 double precision numbers) and
6 other numbers (for a total of 3 X 3 + 3 = 12 doubles + 3 integers). In each run, the number
of columns and the number of elements in each vector is varied. In Figure 5, we compare
different compression algorithms and output media like in the previous benchmark, but this
time using a dataset containing 10 columns where each entry is a vector with 10 randomly
generated Events as elements.
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Figure 5: Run time and speedup for creating and saving ~1GB of randomly generated
std: :vector<Event> in various configurations. Each dataset has 10 columns
with vectors of 10 elements as entries.
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Figure 6: Run time and speedup for creating and saving ~10GB of randomly generated

std: :vector<Event>. Datasets have different numbers of columns and entries,
but the total amount of data is kept constant. Only the NVMe solid state disk has

been used for data output.
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In the benchmarks of Figure 5, implicit multi-threading (IMT) has been disabled in ROOT.
Parallelism is achieved via multiple threads or tasks writing to TBufferMergerFiles, without
noticeable differences when using standard threads or TBB tasks for the workers. The time
necessary to flush disk buffers after each run is also negligible compared with the run time of
each benchmark.

Figure 6 shows that the difference in run time is no longer limited by the bandwidth of
the output media, even if it is visibly affected by it. A noticeable difference from the previous
benchmark is that LZMA compressed data can be written out to disk faster than uncompressed
data due to the higher compression ratio. In all benchmarks, no big difference in performance
is observed between ZLIB and LZ4 compression algorithms. In Figure 6, output is written only
into the Samsung Evo 960 NVMe SSD, and the flushing strategy is different than before. Per
worker, each 1% of data generated causes a flush event (compression of memory buffers), and
each 10% causes data to be written out from memory buffers to disk. Implicit multi-threading
remains disabled, and the size of the generated dataset is increased ten-fold, to about 10GB.
The number of data columns is varied along with the number of elements in each vector in
such a way that the total amount of generated data remains constant. With the new approach
for flushing and saving the data, scaling is improved, but only up to the number of physical
cores available on the machine.

5 Conclusion

We presented the TBufferMerger class introduced in ROOT 6.10 and used it to characterize
the performance of ROOT’s I/O subsystem in various scenarios. We have shown that strong
scaling can be nearly ideal when the workload is CPU-bound, but that the cost of serialization
can become a bottleneck when writing out more complex datasets. In particular, writing
out uncompressed datasets has poorer scaling in part due to the higher volume of data, but
also due to the heavier relative weight of I/O operations given the lack of compression. In
realistic workloads, such as simulation and reconstruction, ROOT’s I/O subsystem is unlikely
to become a performance bottleneck. In CMS reconstruction jobs, for instance, the event
processing rate drops only by 1.3% when writing out results to disk compared with not
writing anything (4.59 events/s vs 4.65 events/s) [4]. Performance issues identified by these
benchmarks (lock contention during accesses to ROOT’s type system) have been fixed and
will be available in the upcoming release of ROOT, 6.16/00.
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