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Abstract. We study fluctuation effects in the two-species reaction-diffusion system A +
B → ∅ and A + A → (∅, A). In contrast to the usually assumed ordinary short-range
diffusion spreading of the reactants we consider anomalous diffusion due to microscopic
long-range hops. In order to describe the latter, we employ the Lévy stochastic ensemble.
The probability distribution for the Lévy flights decays in d dimensions with the distance
r according to a power-law r−d−σ. For anomalous diffusion (including Lévy flights) the
critical dimension dc = σ depends on the control parameter σ, 0 < σ ≤ 2. The model
is studied in terms of the field theoretic approach based on the Feynman diagrammatic
technique and perturbative renormalization group method. We demonstrate the ideas
behind the B particle density calculation.

1 Introduction

Genuine reaction-diffusion models describe a multitude of phenomena in various disciplines, from
population dynamics in ecology, competition of bacterial colonies in microbiology, dynamics of mag-
netic monopoles in the early universe in cosmology, to the stock market in economy, opinion exchange
in sociology, etc [1].

We consider a system consisting of two particle species A and B, with the corresponding diffusion
constants DnA and DnB. The reacting particles are assumed to undergo two kinds of reaction processes

A + A→

∅, with probability p,
A, with probability 1 − p,

A + B→ A. (1)

The problem where both particle species are mobile due to diffusion was studied in [2–4]. Neglecting
the initial conditions, the mean-field equations for the process (1) take the simple form

∂a
∂t
= DnA∇2a − λa2,

∂b
∂t
= DnB∇2b − λ′ab, (2)

where a and b denote the densities of corresponding reacting particles A and B, parameters λ and λ′

are the reaction rates.
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For a space dimension d larger than the upper critical dimension dc (dc = 2 for the ordinary
diffusion) the result for particle density A decreases with time as a ∼ 1/(λt) [3–5]. The density of
B particles decays with time as b ∼ t−θ, where exponent θ depends on the ratio δ = DnB/DnA and
the probability p [2, 3, 6]. For dimensions d ≤ 2 the fluctuations become relevant and θ can not be
determined from the rate equations (2).

To model a long-range spreading, we consider a generalized diffusion process, in which hopping
distances are governed by the Lévy distribution [7]. The Fourier transforms of such distributions
are P(k) = e−DAkσ , P(k) = e−DBkσ for the Lévy index 0 < σ ≤ 2, where the anomalous diffusion
constants DA and DB scale the distributions [8]. The exponent σ is a free parameter that controls the
characteristic shape of the distribution. It should be emphasized that σ does not introduce any new
length scale, rather it changes the scaling properties of the underlying (anomalous) diffusion process
[9]. The anomalous diffusion modeled by the Lévy flights is effectively captured by the following
substitutions:

DnA∇2 → DnA∇2 + DA∇σ, DnB∇2 → DnB∇2 + DB∇σ. (3)

The analysis of the canonical dimensions shows that for the case σ < 2 the ordinary diffusion terms
∝ ∇2 are infrared irrelevant with respect to the anomalous diffusion terms ∝ ∇σ. Both ordinary
diffusion terms and anomalous diffusion terms have to be included for σ → 2 [10, 11]. However,
we are not interested in this case, and in the rest of the paper we assume that σ � 2 and discard the
ordinary diffusion terms. Considering the Lévy flights also enables us to continuously vary the upper
critical dimension with the Lévy index [12], since introducing the Lévy flights causes the critical
dimension to be of the form dc = σ.

In order to calculate the large-time behavior of the B particle density below the critical dimension,
it is advantageous to employ the field theoretic approach followed by the perturbative renormalization
group formalism. Here, we do not focus on the renormalization procedure itself, which can be found
elsewhere for the ordinary diffusion case [2, 4] or for a simpler reaction-diffusion process A + A→ ∅
with anomalous diffusion [13]. Rather, we concentrate on explaining how the density of B particles
can be calculated.

2 Field theoretic model
The field theory corresponding to the two-species reaction-diffusion model (2) with the Lévy flights
can be derived from the master equation using the standard formalism of Doi [14, 15] and Peliti [16].
The ensuing field theoretic action [5, 17, 18] takes the form

S =
∫ ∞

0
dt
∫ ∞
−∞

dd x
[
ψ†A(∂t − ∇σ)ψA + ψ

†
B(∂t − δ∇σ)ψB + λ0ψ

†
Aψ

2
A + λ0ψ

†2
A ψ

2
A + λ

′
0Qψ†BψAψB

+ λ′0ψ
†
Aψ
†
BψAψB

]
−
∫ ∞
−∞

dd x (ψ†Aa0 + ψ
†
Bb0). (4)

A simpler form of the action is obtained provided the new parameters δ = DB/DA and Q = 1/(2 − p)
are introduced, the time t, λ and λ′ are rescaled to absorb the anomalous diffusion constant DA and
fields as follows: ψA → QψA, ψ†A → ψ

†
A/Q.

The action (4) of the studied model has a convenient form for the standard Feynman diagrammatic
technique [17, 18], the elements of which are depicted in Fig. 1. This technique allows us to con-
struct an expression for the B-particle density, which is of interest here, in the form of a perturbation
expansion. The order of the perturbation theory is set by the number of loops. The calculation of
one-loop diagrams corrects the mean-field approximation, which is not valid below the upper critical
dimension. To take into account all possible contributions of the initial conditions, we first need to
find the mean-field expressions for the particle densities and propagators [17].
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Figure 1. Propagators, initial conditions and vertices of the theory described by the action (4).

3 Mean-field approximation

The mean-field approximation corresponding to a sum of Feynman diagrams without loops and for
the A and B particle densities reads

〈ψA(t)〉m f ≡ =
a0

1 + a0λ0t
, 〈ψB(t)〉m f ≡ =

b0

(1 + a0λ0t)λ
′
0Q/λ0
, (5)

where the subscript m f stands for the mean-field approximation. Let us note that Eq. (5) corresponds
to the solution of the rate equations (2). The mean-field propagators Gm f

AA ≡ 〈ψA(−p, t2)ψ†A(p, t1)〉m f

and Gm f
BB ≡ 〈ψB(−p, t2)ψ†B(p, t1)〉m f can be written as follows:

Gm f
AA(p, t2, t1) ≡ = e−pσ(t2−t1)

(1 + λ0a0t1
1 + λ0a0t2

)2
,

Gm f
BB(p, t2, t1) ≡ = e−δp

σ(t2−t1)
(1 + λ0a0t1
1 + λ0a0t2

)λ′0Q/λ0

. (6)

Knowing the mean-field structures of the densities and propagators allows us to calculate the one-loop
corrections to the B particle density.

4 An instance of one-loop Feynman diagram calculation

The contributions of one-loop order to the B particle density in the anomalous diffusion case involve
three Feynman diagrams. The calculation of the simplest one, reported below, illustrates the ideas
behind the general procedure.

 

=

∫ t

0
dt2

∫ t2

0
dt1

∫ t2

t1
dt′Gm f

BB(p, t2, t′)(−λ′0Q)〈ψB(t′)〉m f G
m f
AA(p, t′, t1)

×
∫

ddk
(2π)d (−λ0)Gm f 2

AA (k, t2, t1)(−λ0)〈ψA(t1)〉2m f , (7)

where Eqs. (5) and (6) are used. After integration over variable t′ we apply the limit a0 → ∞ [2, 3] to
get

= −
a2

0b0λ
2
0λ
′
0Q

(1 + a0λ0t)λ
′
0Q/λ0

∫ t

0
dt2

∫ t2

0
dt1

(1 + a0λ0t1)2

(1 + a0λ0t2)2

∫ t

t2
dt (1 + a0λ0t′)−2

∫
ddk

(2π)d , exp
[
− 2kσ(t2 − t1)

]

= −
a0b0λ0λ

′
0Q

(a0λ0t)1+λ′0Q/λ0

∫ t

0
dt2

∫ t2

0
dt1 t2

1t−3
2

∫
ddk

(2π)d exp
[
− 2kσ(t2 − t1)

]
.

(8)
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For momentum integration we use the expression [11]

2π−d/2Γ(1 + d/2)
∫

ddk f (|k|σ) = 2π−d/σΓ(1 + d/σ)
∫

d2d/σk f (|k|2), (9)

which results in momentum integration taking the form
∫

ddk
(2π)d exp

[
− 2kσ(t2 − t1)

]
=

21−d/σΓ(d/σ)
(4π)d/2Γ(d/2)

(t2 − t1)−d/σ. (10)

After time integration and also momentum integration we obtain the following expression:

= −
b0λ

′
0Q

(a0λ0t)λ
′
0Q/λ0

21−d/σΓ[d/σ]
σ(4π)d/2Γ[d/2]

tε/σ
2σ5

ε2(ε + σ)2(ε + 2σ)
, (11)

where the substitution ε = σ − d was inserted.

5 Conclusions
A study of two-species reaction-diffusion systems in which the reactants undergo anomalous diffusion
was reported. The theoretical model uses stochastic probability distribution based on Lévy flights to
incorporate long-range spreading. The model is studied for the case of infra-red irrelevant ordinary
diffusion employing field-theoretic perturbative renormalization group. In this short communication,
preliminary calculations of the time evolution of the B particle density are given. The model calcula-
tion of a one-loop Feynman diagram opens the way to numerous future developments of the problem.
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