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Abstract. Nonlinear MHD modeling of toroidal pinch configurations for hot plasma magnetic confinement de-
scribes several features of the helical self-organization process, which is observed in both reversed-field pinches
and tokamaks. It can also give a hint on why transport barriers are formed, by far one of the more interesting
observations in experiments. The work tackles these two topics, helical self-organization and transport bar-
riers formation - adding further information and examples to the results already presented in [Veranda, et al,
Nucl.Fus. 60 016007 (2020)]. Regarding the topic of helical self-organization, a synthesis of the results ob-
tained by a 3D nonlinear viscoresistive magnetohydrodynamics model will be presented. Modelling predicts
a technique to “channel” reversed-field pinches into a chosen macroscopic helical shape and also predicts that
the features of such helical self-organization, studied in the RFX-mod experiment in Padova, depend on two
parameters only: plasma dissipation coefficients and edge radial magnetic field. They can be exploited to calm
the natural tendency of reversed-field pinches to a “sawtoothing” dynamics, i.e. by decreasing visco-resistive
dissipation and using helical edge fields not resonating with the plasma safety factor. Regarding the MHD
description of the process of formation of transport barriers by magnetic chaos healing, we will describe the
computation of Lagrangian structures, hidden in the weakly stochastic behaviour of magnetic field lines, acting
as barriers to the transport. The radial position of such structures is observed to correspond to higher gradients
of magnetic field lines connection length to the edge: this provides a further indication of their possible role in
the formation of electron temperature barriers.

1 Introduction

This paper discusses self-organized states in current-
carrying pinches by focusing on the numerical solution
of a 3D nonlinear visco-resistive magnetohydrodynamic
(MHD) model, which considers the plasma as a quasineu-
tral electrically conducting fluid. The paper is focused
on the reversed-field pinch (RFP) configuration [1].
Numerical solution of such visco-resistive MHD model
applied to the RFP predicted that the magnetic field can
acquire a helical state in a self-organized manner [2–6], a
feature later observed in high-current plasmas in various
RFPs devices [7–9]. More recently, the MHD model
has improved its descriptive capability of the typical
experimental intermittency [10], predicted new ways for
channeling helical self-organization towards a selected
state highlighting the role of small edge helical magnetic
field [11], a set of results then validated by experiments
[12] in RFX-mod in Italy.
This work focuses on the two key simulation parameters
that are most involved in the emergence and control of
3D quasi-helical states in RFPs.A first parameter is the
plasma visco-resistive dissipation, and defines a transition
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between stationary helical equilibria and a cyclical
dynamics. The other parameter is the amplitude of the
helical magnetic boundary conditions, which control the
level of intermittency and can force the self-organization
towards a state chosen by an external feedback control
system [13], with positive effects on plasma performances.
Then, this work also discusses magnetic topology and
confinement of magnetic field lines in RFP quasi-helical
states. The Lagrangian Coherent Structures (LCS)
technique is used, borrowed from the study of dynamical
systems (for a definition of LCSs see the review papers
[14–17] and the applications in [18, 19]). LCSs allow
the discrimination of regions with different transport
qualities: they are found in resilient bundles sorrounding
the helical core during the whole dynamical evolution of
the configuration, reinforcing the magnetic chaos healing
effect provided by the formation of perfectly conserved
helical magnetic surfaces in the core and safeguarding it,
especially during relaxation events, whose periodicity is
also analyzed in this work. Moreover we show a clear
relationship between large gradients in connection length
of magnetic field lines to the edge and the presence of
LCSs - an important clue to their role in the formation of
internal transport barriers.
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As a final comment of this introduction we remind that,
even though the paper is centered on the reversed-field
pinch (RFP) configuration, similar modelling could be
applied also to other current-carrying pinches like the
tokamaks [20–23], the spheromaks [24], or the field-
reversed configurations [25] and that, on a much larger
spatial scale, helical self-organization is an ubiquitous
feature in astrophysical plasmas [26, 27].

This work is structured as follows: in Sec. 2 we describe
the employed MHD model. In Sec. 3 we focus on the
pervasive presence of helical states in the solution of the
nonlinear magnetohydrodynamics model. In particular, in
Sec. 3.1 and 3.2 we describe the dynamical transition to
quasi-helical states in the RFP, influenced by viscoresis-
tive dissipation and by helical boundary conditions for the
magnetic field. In Sec. 3.3 we describe the features of
the periodicity of the relaxation events which tend to af-
fect QSH regimes in the RFP.
In Sec. 4, we present the studies about magnetic field line
transport in the RFP. There we show how a resilient bundle
of Lagrangian Coherent Structures (LCS) can give indica-
tions of local reduced transport of magnetic field lines, to-
gether with an enhanced magnetic chaos healing effect as-
sociated with the formation of quasi-helical states, in par-
ticular the ones based on non-resonant MHD modes. In
Sec. 5, we draw some final remarks.
We remark that the results described in this work are
strongly related with the ones presented in [28], adding
new material that reinforces the results obtained therein
regarding the two topics, helical states dynamics and mag-
netic chaos healing, described in the following sections.

2 Numerical tools

The simulations presented here are performed with the
SpeCyl code [29], recently verified numerically against
the PIXIE3D code [30] with excellent results [31]. SpeCyl
deals with the simple visco-resistive approximation which
combines Faraday law, momentum equation (viscous
Navier-Stokes) and the single fluid resistive Ohm’s law (in
Eqs. 1a,1b,1c) to evolve the magnetic B and velocity u
fields in time t. Plasma density is assumed to remain uni-
form and constant, ρ = 1. Pressure is neglected. This
yields a model with two parameters: the dimensionless re-
sistivity η and viscosity ν. The model has been extensively
used for compressible laboratory plasmas, capturing major
physical effects observed in experiments (see for example
[7, 32–37]). The equations written in dimensionless units
are:

∂u
∂t + u · ∇u = J × B + ν∇2u (1a)
∂B
∂t = ∇ × (u × B − ηJ) (1b)

∇ × B = J (1c)
∇ · B = 0 (1d)

Numerical simulations are performed in cylindrical
geometry with aspect ratio R0/a = 4, where a = 1
is the cylinder radius. Simulations reported in this

paper employ resistivity increasing towards the edge,
η(r/a) = η0(1 + 20(r/a)10), and uniform viscosity ν0,
with η0 ∈ [10−7, 10−4] and ν0 ∈ [10−5, 10−2]). The
relevant time scales of the system are the Alfvén time
τA = a(µ0ρ)1/2B−1

0 with B0 on axis field, the resistive time
τR = µ0a2σ0, with σ0 on-axis electrical conductivity and
the viscous time scale τν = a2/ν. We can then define the
Lundquist number S = τR

τA
, the viscous Lundquist number

M =
τν
τA

, the Prandtl number P = S
M and the Hartmann

number H = S P−1/2 (the last two quantitites can be
obtained by properly rescaling Eqs.1, as done in [6]).
Magnetic boundary conditions are defined as follows. The
edge radial magnetic field is either zero, corresponding to
an ideal conducting wall, or helically modulated through
MP [38]. The MP helical twist is defined by nMP with
poloidal periodicity m = 1, and MP intensity is measured
by the quantity MP%= br(a)/Bθ(a)%. The simulations
start from an axisymmetric, non-reversed, unstable Ohmic
equilibrium [39] with pinch parameter Θ = Bθ(a)

〈Bz〉 = 1.6.
Fig. 1 presents the main features of ohmic axisymmetric
equilibria for RFP. An uniform induction electric field
E = E0 ẑ is imposed to sustain the plasma current,
with E0/η0 = 4.2. A slight perturbation nonlinearly
induces the reversal and starts the MHD dynamics, typi-
cally driven by modes of resistive-kink/tearing nature [38].

3 Quasi-Helical solutions of the
visco-resistive MHD model

In this section, we describe the results of an extended set of
simulations of the visco-resistive MHD model described in
Sec. 2. The resulting global picture consolidates the im-
portance of the Hartmann number and the key role played
by edge magnetic perturbations in ruling the helical self-
organization process in reversed-field pinches.
This section is structured as follows: at the beginning
we describe the dynamics of couples of RFP simulations,
choosing extreme values of the Hartmann number and MP
amplitude (Sec. 3.1). In this way the possible qualitative
behaviour obtained when spanning the simulations param-
eter space are found. Then, quantitative results will be
shown for a larger number of simulations, analyzing the
energy associated with the dominant helical mode versus
the energy of the other MHD modes, often used also in
experimental analyses (Sec. 3.2). The results described
in the following can be synthetized as follows. Several
features of the helical regimes are ruled by two quanti-
ties only, the Hartmann number and magnetic boundary
conditions. An increase of the Hartmann number (i.e. a
reduction of visco-resistive dissipation) at fixed MP’s am-
plitude allows a transition from a single-mode behaviour
to a multiple helicity one, while a proper choice of MPs
at fixed high Hartmann number can pace the sawtoothing
dynamics and can stimulate quasi-helical states in between
sawteeth, with its same helical twist.
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Figure 1. Radial profiles of the equilibrium magnetic, current density and velocity fields in the RFP cases. The Bz component of the
RFP magnetic field slightly reverses at the edge, giving the name to the configuration. Magnetic field is normalized to its on-axis initial
value, velocity field is normalized to the corresponding Alfvèn velocity. Dotted lines represent the same quantities after the relaxation
event following a slight perturbation of the initial equilibrium, resulting in the beginning of the 3D MHD dynamics. In this picture the
modulus of all the quantities is plotted.

Figure 2. Solutions of the 3D nonlinear MHD model for RFP cases. Helical states are found at low Hartmann number H < Hc ∼ 3 ·103

(top-left) characterized by a 2D symmetry (SH Single Helicity states, with well-defined magnetic surfaces in the whole plasma volume).
In the bottom-right corner, corresponding to high values of H (H > Hc) and using MPs, we find a state with a high level of helical
symmetry (with the same twist of the MPs, which in this case is m=1, n=-6, MP% = 2%).

3.1 RFP helical regimes

We start by considering a magnetic perturbation applied
on the m=1, n=-6 mode, which corresponds to the heli-
cal twist of a mode non-resonating with the safety factor.
Typically in RFX-mod operation at high current the m=1,
n=-7 mode is observed as the spontaneously dominant one
in quasi-helical states, even though it was shown in [12]
that n=-6 states can be induced by the feedback control
system [13, 40]. We first show in Fig. 2 the four different
regimes which can be obtained making extreme choices
for the quantities H,MP%.
In Fig. 2 we plot the temporal evolution of the total en-
ergy associated to the most important m=1 helical modes.
Consider the helical states found at low Hartmann number
and zero MP (top left): at t ∼ 0.1τR the stationary helical

solution of the model is made up of a single MHD mode
with m=1, n=-11 (SH Single Helicity states, with well-
defined magnetic surfaces in the whole plasma volume).
This mode is different from the most unstable ones, which
at the very beginning of the simulation around t ∼ 0.02τR

create a sequence of modes with increasing periodicity
number starting from n=-8, sequence that is typical of the
RFP multiple helicity relaxations. However, at a certain
time, the (1,-11) mode overcomes the others, which expo-
nentially decay to vanishing amplitude. At high values of
H and zero MP (top right) instead, a strong competition
between MHD modes ends in the presence of a sawtooth-
ing regime (MH Multiple Helicity states, with stochastic
magnetic field lines). In particular, one notices that the en-
ergy associated to the modes is two orders of magnitude
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lower in the high H cases, where it reaches values com-
patible with experimental measurements in the RFX-mod
device and that the m=1, n=-6 mode has negligible ampli-
tude.
In the second row of Fig. 2, we turn on the helical bound-
ary condition on the m=1, n=-6 mode with amplitude
MP%= 2%. In the low H and MP-on quarter (bottom left)
we observe that the system reacts to the new boundary con-
dition by amplifying to large amplitude the one stimulated
by MPs in the spectrum of helical modes. In the end the
m=1, n=-11 mode remains the most energetic one, while
the m=1, n=-6 mode remains stationary at a finite energy.
Finally, in the high H and MP-on quarter (bottom right) we
find a systematic repetition of quasi-helical states, with a
clearly dominating MHD mode which has the same twist
of the applied MPs. Thus, in the end, the applied MP is
successful in overcoming the other modes thanks to the
natural depression at higher H values of the competing
modes. This last example is the most adherent to the ex-
perimental observations in RFX-mod, as was discussed in
[10, 12].

3.2 Statistical analysis of numerical simulations

We compute the time average of the magnetic energy as-
sociated to the various MHD modes involved in the dy-
namics, so that the considerations made in the previous
sections can be generalized by considering a set of around
100 simulations with varying parameters. We will show
the results of a subset of simulations with nMP = −6, and
keep in mind that if we consider helical regimes with he-
licities close to this one (n ∈ [−5,−9]) the results do not
change.
Thinking in the Fourier space makes clear that the pres-
ence of a QSH or of a SH state can be diagnosed when
we detect a large positive difference between the magnetic
energy of a dominant m=1 mode and the sum of the en-
ergy of other m=1 modes (this indicates the presence of
a helical structure, with an extreme case corresponding to
the absence of m=1 secondary modes (SH)). Another im-
portant indication of the presence of a QSH or of a SH
state is a low magnetic energy of the m=0 MHD modes:
in fact nonlinear interaction between m=1 modes in the
Fourier space corresponds to the destabilization of modes
with m = 1 ± 1 = {0, 2}: the absence of m = {0, 2} modes
is thus and indication of the purity of the m=1 spectrum.
Panel a) of Fig. 3 shows the volume energy of m=1 modes
for a set of MHD simulations without MPs and with vary-
ing dissipation (each point corresponds to time-averages
of one simulation). We find a positive energy difference
between the dominant mode (green full circles in panel
a) and the secondary modes (green empty circles) only at
very low values of H. If we look at green pentagons in
panel c) we observe that the energy of m=0 modes de-
creases at low Hartmann number. Thus, without MP long-
lasting QSH state can be found only at low values of H
(for the temporal dynamics look at the top-left panel of
Fig. 2). Such states were deeply studied in the past, for
example in Refs. [3, 6]. In particular it was shown that

the dominant helicity in highly dissipative regimes with-
out MPs depends on the value of Θ [41].
The scaling of the secondary modes’ amplitude in the first
panel of Fig. 3 changes abruptly around Hc ∼ 3 · 103:
this is the signature of a dynamical transition. In the re-
gion H < Hc the scaling is Wm=1

M,sec ∝ H3.1, calling for a
reduction of the Hartmann number to access helical states
at very high plasma dissipation (meaning low plasma cur-
rent and/or high plasma density). In the region H > Hc the
scaling is Wm=1

M,sec ∝ H−0.6, calling for an increase of Hart-
mann number to reduce fluctuations (meaning high plasma
current and/or low plasma density).
Let us then consider the panel b) (fuchsia dots) of Fig. 3,
corresponding to a set of MHD simulations with MPs on
the m=1 n=-6 MHD mode with amplitude MP%∼4% and
with varying dissipation: the points at low Hartmann num-
ber represent situations in which mode stimulated by the
MPs does not become the dominant one and its role is that
of perturbing the “no-MP“ helical regime creating a state
with two dominant helicities, like in the bottom-left corner
of Fig. 2. At high Hartmann number we find a positive en-
ergy difference between the stimulated mode (fuchsia full
circles in panel b) and the secondary modes (fuchsia empty
circles). This is confirmed by checking the intensity of the
m=0 modes (look at fuchsia octagons in panel c) showing
a saturation of their amplitude at low H. Instead, we ob-
serve a clear decreasing trend of the energy of m=0 modes
only at high Hartmann number: this feature, together with
the presence of a single dominant m=1 mode (full fuchsia
dots in panel b), characterizes the Quasi-Single Helicity
states (like the one in the bottom right corner of Fig. 2).
For values of nMP ∈ [−9,−5] there are always two regions
where long-lasting QSH regimes, i.e. obeying to the two
requirements written before, can be found. Pure and ro-
bust and stationary helical regimes are present at H � Hc

and are studied in [3, 6, 41], where the features of the in-
termediate turbulent regimes found at H ∼ Hc are also de-
scribed. The regimes detected at H � Hc display the typ-
ical intermittent behaviour observed in RFP experiments.
They were studied in [10, 11].
Though the low-H regimes would represent a stationary,
stochasticity-free option for the operation of an RFP de-
vice, comparison with experimental results tends to rule
out the high-dissipation solution. In fact a reasonable
lower bound for the Hartmann number value in typical
RFX-mod experiments is H > 105 (see Ref. [42] for an
estimate of H in RFX-mod).
In summary, the extended numerical study presented in
this subsection provides a complete picture of the different
helical regimes of the RFP and of the transition between
them. The major conclusion is that there is just one re-
gion where long-lasting QSH state qualitatively similar to
experimental observations can be found, i.e. only at high
Hartmann number and only using MPs with the proper am-
plitude.
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In summary, the extended numerical study presented in
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Figure 3. Scaling of the magnetic energy associated to the dominant and secondary MHD modes with the Hartmann number. Panel a
shows the behaviour of m=1 modes without applied MPs. Panel b): m=1 modes with applied MPs on m=1, n=-6, MP% = 4%. Panel
c) focus on m=0 modes. Two shaded regions where QSH states can be predicted are found: a green one at very high dissipation (panel
a), with spontaneous 2D helical states, and a fuchsia one at low dissipation only when MPs are turned on (panel b). The toroidal mode
number of the dominant mode is indicated inside some full circles. The behaviour of m=0 MHD modes, to be compared with previous
results in [41] also confirm the presence of these two regions. Intermediate regions (H ∼ 103) instead do not correspond to helical
solutions.

3.3 Scaling of the “sawtoothing” characteristic
time

We name the characteristic time between a sawtoothing
event in the RFP τsaw, and we compute it by looking for the
time intervals between maxima of selected physical quan-
tities, like the magnetic energy associated to the dominant
mode. We define τsaw as the average of the time intervals
in a single simulation (see the bottom right panel of Fig. 2
for a visual definition of τsaw) and we compute the related
error δτsaw .

Figure 4. Scaling of the rescaled sawtoothing characteristic time
τ̄saw with the Hartmann number.

The “sawtoothing” repetition time in our database of RFP
simulations (the same one used for the statistical analy-
sis of Sec. 3.2) is computed only for simulations show-
ing an intermittent behaviour, i.e. with Hartmann H >
Hc ∼ 3 · 103. From the whole database we obtain a scal-
ing τsaw ∝ S 0.87±0.03M−0.11±0.07, indicating a strong depen-
dence on resistivity. An analogous scaling can be obtained
considering a different couple of visco-resistive dissipa-
tion parameters, meaning the couple (H, P): noting that the
equation can be properly rescaled as described in [6], the

previous relation can be analyzed, provided that the value
of τsaw is rescaled as well (using τsaw → τ̄saw = P−

1
2 τsaw).

We can thus obtain a new scaling which is linked to the
previous one by a simple relation obtained by substitut-
ing the definitions of (H, P) in terms of (S ,M).This choice
of parameters yields a scaling of the rescaled sawtooth-
ing period as τ̄saw ∝ H0.76±0.03P−0.01±0.04 which depends
mostly on H, see Fig. 4. The relatively strong depen-
dence of τsaw on dissipation, already found in [29], may
explain why RFP quasi-helical states are observed to be-
come more persistent (i.e. with less sawtoothing events)
when increasing current (i.e. decreasing resistivity): in
Fig.5a of [43] a strong dependence of QSH-persistence is
in fact observed with the Lundquist number, which in turn
strongly depends on plasma current.

4 Topology of quasi-helical states:
barriers to the transport of magnetic
field lines

In this section we discuss Poincaré plots, Lagrangian
Coherent Structures (LCS) computation and connection
length Lc to show that a suitable choice of the MP spec-
trum at the edge is an important ingredient for the attain-
ment of higher magnetic order and that bundles of LCSs
sorround the helical core of the configuration. The studies
presented in this work are performed with the NEMATO
field line tracing code (presented in [44] and numerically
benchmarked with success in [45]).

4.1 Lagrangian Coherent Structures and the
degree of magnetic order

Few preliminary words about the LCS tool, borrowed from
the study of dynamical systems. LCSs can be used to dis-
tinguish regions with different transport qualities and their
most important feature is that, for a meaningful finite time
span which characterizes a LCS [18], magnetic field lines
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belonging to different regions cannot mix with each other.
The LCS technique allows a more refined analysis than a
simple inspection of a Poincaré map. As shown in [12, 46],
when a Poincaré map suggests only a stochastic behaviour,
the LCS tool highlights some structures, which we color in
blue in the panels a)-f) of Fig. 6.
If we look at Fig. 5 we can define a high magnetic order
if there is a large area of the Poincaré plot occupied by
conserved magnetic surfaces (colored areas) or, looking at
Fig. 6, if we compute the presence of well-defined bundles
of LCS (plotted in blue), or if we measure a large connec-
tion length of magnetic field lines to the edge (white areas
of high connection length maps on the poloidal sections,
plotted in Fig. 6) and if such positive features resist to the
sawtoothing events.

4.2 Poincaré plots of quasi-helical states

The two simulation cases that we consider are character-
ized by the visco-resistive parameters S = 106, M = 104

and differ only with respect to the dominant MHD mode,
either a QSH state with a non-resonant mMP = 1, nMP =

−6 helical twist in the first row or a mMP = 1, nMP = −7
case in the second, in both cases with amplitude MP%=
2%. In each case we study a dynamic cycle starting with
the formation of a QSH state (first column of Fig. 5), con-
tinuing with a full development of the helical state (second
column) and ending with a relaxation of the quasi-helical
fields, resulting in the loss of part of the positive helical
magnetic topology features, as can be seen by the general-
ized reduction of the area occupied by conserved magnetic
surfaces in the third column of Fig. 5. Poincaré plots of
Fig. 5 are performed on a toroidal surface of section. In
the first row the mMP = 1, nMP = −6 simulation case, in
the second row the mMP = 1, nMP = −7 case. Fig. 5a
shows that a core region of conserved magnetic surfaces is
present when the QSH state is forming (red region in the
first row, blue in the second). Surrounding the core is a
stochastic region, whose radial extension depends on the
relative intensity of the dominant helical mode and its per-
turbations (grey region). As a first consideration we notice
that the area of conserved magnetic surfaces in the non-
resonant case is higher than that in the resonant case, both
during the formation of the helical state and its relaxation
to a MH state (last column of Fig. 5): this was already
found in [12], but here the greater resilience to magnetic
chaos is confirmed during the whole cycle of evolution
of a QSH state. Another difference between the first two
rows is that in resonant cases the core-conserved region
does not enclose the cylindrical axis at r/a = 0, while the
non-resonant cases generally do (apart from the relaxation
phase). This may be important for understanding the fea-
tures of the electron temperature profiles measured in RFP
experiments, which display clear internal transport barri-
ers previously put in relation to magnetic chaos healing
and helical q profile [7, 47].

4.3 Lagrangian Coherent Structures in
quasi-helical states

LCSs are computed in the two cycles of QSH states, and
are colored in blue in Fig. 6. We considered just the LCS
located in the core, i.e. at r/a < 0.7. LCS are computed
using a finite time Lz of 4 toroidal turns for each magnetic
field line (for a justification of the finite time choice, a
critical parameter of the whole method for computing
LCSs, see [12, 46]). From a topological point of view
there are no relevant differences between the LCSs’ shape
in the two quasi-helical states: they tend to encompass the
helical core as it widens during the evolution of the helical
state. A certain degree of difference can be observed in
the presence of more developed bundles of LCSs in the
non-resonant case, panels a)-c) than in the resonant case.
Interestingly, in the latter case the position of a bundle
of LCSs can be correlated with the position of reversed
shear of the helical safety factor profile (see Fig. 5 and
Ref.[47]).
LCSs are observed to evolve on a time scale slower
than the dynamical one, as their shape does not change
significantly between the beginning and the middle of
QSH states in the first two columns of Fig. 6), which
are separated by τdyn ∼ 104 τA. Another important time
scale is the one related to the LCSs’ power of separating
different spatial regions, which lies on a shorter timescale
τsep ∼ 103 τA [12], after which LCSs become leaky.
An assumption at the basis of our use of the LCS tech-
nique is that the magnetic field line are used as a proxy
for the particle trajectories along the lines. It is our plan
to use tools beyond this ansatz to take into account the
behaviour of charged particle in the magnetic field under
scrutiny, like the one described in Ref. [48].

4.4 Study of the connection length to the edge

LCSs’ ability to confine magnetic field lines, a feature
not to be argued from a simple inspection of the Poincaré
plots of Fig. 5, can be analyzed by computing the connec-
tion length to the edge, i.e. the length Lc that a magnetic
field line starting at (r0, θ0) covers to reach an edge radius
taken as a reference for the computation r/a = 0.75. The
results are shown in Fig. 6, where magnetic field lines
have been integrated until a maximum normalized length
of Lc,max = 105 (corresponding to a time of τconn ∼ 105 τA,
i.e. much greater than the duration of a QSH cycle).
We observe first that the areas in white, characterized by
Lc = Lc,max, are generally larger in non-resonant states.
We also notice regions where the connection length drops
sharply: these regions are in good correspondence with
the presence of bundles of LCS, another evidence of their
role in defining special regions for the transport of mag-
netic field lines. We also note that when the ordering role
of the helical mode fades, in the third column of Fig. 6,
a rich set of topological structures appear connecting the
plasma core to the plasma edge with relatively low con-
nection length. Consider for example the green spots at
r ∼ 0.2, θ ∼ 0 in panel c), which are named “escape chan-
nels” in plasma literature [49, 50]: there, they are shown
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does not enclose the cylindrical axis at r/a = 0, while the
non-resonant cases generally do (apart from the relaxation
phase). This may be important for understanding the fea-
tures of the electron temperature profiles measured in RFP
experiments, which display clear internal transport barri-
ers previously put in relation to magnetic chaos healing
and helical q profile [7, 47].

4.3 Lagrangian Coherent Structures in
quasi-helical states

LCSs are computed in the two cycles of QSH states, and
are colored in blue in Fig. 6. We considered just the LCS
located in the core, i.e. at r/a < 0.7. LCS are computed
using a finite time Lz of 4 toroidal turns for each magnetic
field line (for a justification of the finite time choice, a
critical parameter of the whole method for computing
LCSs, see [12, 46]). From a topological point of view
there are no relevant differences between the LCSs’ shape
in the two quasi-helical states: they tend to encompass the
helical core as it widens during the evolution of the helical
state. A certain degree of difference can be observed in
the presence of more developed bundles of LCSs in the
non-resonant case, panels a)-c) than in the resonant case.
Interestingly, in the latter case the position of a bundle
of LCSs can be correlated with the position of reversed
shear of the helical safety factor profile (see Fig. 5 and
Ref.[47]).
LCSs are observed to evolve on a time scale slower
than the dynamical one, as their shape does not change
significantly between the beginning and the middle of
QSH states in the first two columns of Fig. 6), which
are separated by τdyn ∼ 104 τA. Another important time
scale is the one related to the LCSs’ power of separating
different spatial regions, which lies on a shorter timescale
τsep ∼ 103 τA [12], after which LCSs become leaky.
An assumption at the basis of our use of the LCS tech-
nique is that the magnetic field line are used as a proxy
for the particle trajectories along the lines. It is our plan
to use tools beyond this ansatz to take into account the
behaviour of charged particle in the magnetic field under
scrutiny, like the one described in Ref. [48].

4.4 Study of the connection length to the edge

LCSs’ ability to confine magnetic field lines, a feature
not to be argued from a simple inspection of the Poincaré
plots of Fig. 5, can be analyzed by computing the connec-
tion length to the edge, i.e. the length Lc that a magnetic
field line starting at (r0, θ0) covers to reach an edge radius
taken as a reference for the computation r/a = 0.75. The
results are shown in Fig. 6, where magnetic field lines
have been integrated until a maximum normalized length
of Lc,max = 105 (corresponding to a time of τconn ∼ 105 τA,
i.e. much greater than the duration of a QSH cycle).
We observe first that the areas in white, characterized by
Lc = Lc,max, are generally larger in non-resonant states.
We also notice regions where the connection length drops
sharply: these regions are in good correspondence with
the presence of bundles of LCS, another evidence of their
role in defining special regions for the transport of mag-
netic field lines. We also note that when the ordering role
of the helical mode fades, in the third column of Fig. 6,
a rich set of topological structures appear connecting the
plasma core to the plasma edge with relatively low con-
nection length. Consider for example the green spots at
r ∼ 0.2, θ ∼ 0 in panel c), which are named “escape chan-
nels” in plasma literature [49, 50]: there, they are shown

Figure 5. Magnetic topology in terms of Poincaré plots on a toroidal surface of section during the formation of a helical state, and its
relation with the helical safety-factor. In the first line the evolution of magnetic field topology during a cycle of formation/breakdown
of a non-resonant QSH state with nMP = −6 is shown, while the second line shows a resonant QSH state with nMP = −7.

Figure 6. Blue Lagrangian Coherent Structures (LCS) are superimposed to the contour plot of connection length of magnetic field
lines to the edge. LCS are common feature of quasi-helical regimes, and are typically found in bundles. White levels of the contour
plot correspond to the regions where Lc = Lc,max = 105. The blue LCSs divide regions with different connection length, highlighting
their role in creating and internal barrier to the transport of magnetic field lines.
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to possess a rich fractal structure which may explain some
anomalous values of transport coefficients in the plasma
edge.
As a final point it is important to notice that a “barrier”
structure persists even during the reconnection event (see
panels c) and f)). The detailed impact of these proper-
ties on temperature profiles are under study, both from the
numerical and the experimental point of view: the use of
a numerical code for the solution of the anisotropic heat
transport equation [51, 52] will help determining whether
LCSs are responsible for the high temperature gradients
observed in correspondence of Internal Transport Barriers
[53].

5 Summary and final remarks

Helical self-organization is an ubiquitous feature in
current-carrying toroidal plasmas for magnetic confine-
ment of fusion plasmas. In this work we focus on the
reversed-field pinch configuration, where a global self-
organization process systematically occurs at high plasma
current [1], impressing a helical shape to the whole plasma
column [54, 55], with beneficial effects on confinement
[7].
The first result of this paper is that there are two quanti-
ties ruling the nature of helical states and the possibility
to interact constructively with self-organization, namely
plasma dissipation (Hartmann number H, the inverse geo-
metric mean of resistivity and viscosity) and helical mag-
netic boundary conditions. Synthetizing, there are two
combinations of Hartmann number and helical boundary
conditions leading to quasi-helical solutions for the RFP:
the pulsating solutions at high H and the stationary helical
solutions at low H. We have shown that it is possible to
interact constructively with a helically self-organized RFP
plasma by lowering dissipation (i.e. by increasing plasma
current in the experiment) and favoring a selected MHD
mode by modulating appropriately the edge magnetic field
(i.e. by acting on the plasma-edge with advanced feedback
control system). We also showed that the sawtoothing pe-
riod in the simulations described in this paper is shown to
depend on the Hartmann number only, i.e. on the simple
product of resistivity and viscosity, a result to be validated
experimentally.
The second result of this paper is given by the identifica-
tion of bundles of Lagrangian Coherent Structures as re-
sponsible for the increased confinement of magnetic field
lines close to the core of the helical plasma. LCSs sur-
round the core of helical states and resist to the sawtooth-
ing events in RFPs, even when magnetic topology gets less
ordered. They are correlated to sharp gradients in the con-
nection length of magnetic field lines to the edge, a fact
that further supports the LCSs’ role in the formation of in-
ternal transport barriers. In the future, an analysis of heat
transport taking into account the strong anisotropy in the
thermal conductivity of fusion plasmas and the presence
of magnetic islands and stochastic magnetic fields is fore-
seen (using the tools described in Ref.[51, 52]), aiming at
clarifying the role of LCS in sustaining transport barriers
evolution - following previous studies [56, 57] and in the

addition to already established mechanisms of microtur-
bulence suppression caused by sheared flows [58, 59].
Future numerical work will be dedicated to analyze the
role of a finite pressure gradient and to the effect of a real-
istic boundary on the helical self-organization of the RFP,
adding a thin resistive shell and a vacuum layer between
the plasma and the ideal shell where MPs are applied.
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