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Abstract— We review applications of Kerr micro-combs in RF 

photonic systems including fractional differentiators, Hilbert 

Transformers and many other functions.  

Radio frequency (RF) and microwave photonics, which bring 

together the worlds of radiofrequency engineering and 

optoelectronics [1], exploit the potential of optical 

technologies and benefit RF systems in many respects, 

including high speed, broad operation bandwidth, low loss, 

and strong immunity to electromagnetic interference [2-4]. A 

diverse range of photonic approaches to RF signal generation, 

transmission, processing, and sensing have been proposed and 

widely employed in RF systems and communication networks 

[5-13]. Nevertheless, most RF systems are composed of 

discrete components, which impose certain drawbacks in 

terms of cost, power consumption and reliability, thus holding 

RF photonic systems from reaching maturity and replacing 

traditional RF solutions [14, 15]. Meanwhile, advances in 

integrated photonics [16-21], driven by the compelling 

economics of ever smaller footprint and lower power 

consumption, have created new possibilities and opportunities 

for RF photonics. Commercialized wafer scale fabrication of 

III-V, dielectrics, elemental semiconductor and nonlinear

crystals have solved key challenges for the co-integration of

lasers, modulators, photodetectors, and passive components,

and have paved the road for integrated RF photonics to bring it

closer towards commercial applications.

We review our recent work on RF and microwave photonic 

applications of integrated micro-combs, including a 

reconfigurable RF photonic intensity differentiator, RF 

channelizer and others. By employing an on-chip nonlinear 

micro-ring resonator (MRR), we generate a broadband Kerr 

comb based on soliton crystals, with a record low FSR of 

49GHz, generating a large number of comb lines and use it as 

a high-quality multi-wavelength source for a transversal 

differentiator. By programming and shaping the power of 

individual comb lines according to corresponding tap weights, 

reconfigurable intensity differentiators with variable 

differentiation orders can be achieved. Detailed analyses of the 

operation principle and experimental demonstrations of 

fractional, 1st, 2nd, and 3rd order differentiations are performed. 

As one of the most powerful tools in RF photonic systems, 

optical frequency combs can serve as multi-wavelength 

sources and establish multiple RF channels, and thus can 

greatly increase the capacity for transmission and performance 

for transversal processers [22-26]. Unfortunately, traditional 

approaches like discrete laser arrays, mode-locked lasers, or 

cascaded modulators all have limitations of one form or 

another, such as the cost, ability to be integrated or the number 

of available wavelengths, and thus pose challenges for 

integrated RF photonic systems. 

Micro-comb sources, particularly those based on novel 

CMOS-compatible platforms [27, 28], offer new possibilities 

for integrated RF photonics. In 2008-10, new platforms for 

nonlinear optics, including Hydex [27, 29-36] and silicon 

nitride [37], were introduced that exhibit negligible nonlinear 

absorption in the telecom band, a moderate nonlinear 

parameter and extremely high nonlinear figure of merit, which 

are ideal for micro-comb generation. Following the first report 

of Kerr frequency comb sources in 2007 [38], the first 

integrated CMOS compatible integrated optical parametric 

oscillators were reported in 2010 [27, 37], and since then this 

field has exploded. Many cutting-edge applications have been 

demonstrated based on CMOS-compatible micro-combs, 

ranging from filter-driven mode-locked lasers [39-42] to 

quantum physics [43-48]. Meanwhile, for RF photonics, many 

new applications have been investigated with the fundamental 

advantages of micro-combs demonstrated [49-51].  

As compared with conventional intensity differentiators based 

on laser diode arrays, the cost, size and complexity can be 

greatly reduced. Our scheme enables a high degree of 

reconfigurability in terms of processing functions and 

operation bandwidth, offering a reconfigurable platform for 

diverse microwave photonic computing functions. By 

programming the waveshaper’s tap coefficients, our scheme 

can also apply to other computing functions such as Hilbert 

transforms. The operation bandwidth is fundamentally limited 

by the Nyquist zone, which is determined by the comb 

spacing. In our case, the frequency spacing of the Kerr comb 

generated by the nonlinear MRR reaches 200 GHz, thus 

leading to a potential operation bandwidth of over 100 GHz. 
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