Kerr Micro-combs for Radio Frequency Photonics

-INVITED

Xingyuan Xu,¹ Mengxi Tan,¹ Jiayang Wu,¹ Sai T. Chu,³ Brent E. Little,⁴ Roberto Morandotti,⁵ Thach Nguyen¹, Arnan Mitchell,² and David J. Moss¹†

¹Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122 Australia
²School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
³Department of Physics, City University of Hong Kong, Hong Kong, China.
⁴Xi’an Institute of Optics and Precision Mechanics Precision Mechanics of CAS, Xi’an, China.
⁵INRS – Énergie, Matériaux et Télécommunications, Varennes, Québec, J3X 1S2, Canada.

Abstract— We review applications of Kerr micro-combs in RF photonic systems including fractional differentiators, Hilbert Transformers and many other functions.

Radio frequency (RF) and microwave photonics, which bring together the worlds of radiofrequency engineering and optoelectronics [1], exploit the potential of optical technologies and benefit RF systems in many respects, including high speed, broad operation bandwidth, low loss, and strong immunity to electromagnetic interference [2–4]. A diverse range of photonic approaches to RF signal generation, transmission, processing, and sensing have been proposed and widely employed in RF systems and communication networks [5–13]. Nevertheless, most RF systems are composed of discrete components, which impose certain drawbacks in terms of cost, power consumption and reliability, thus holding RF photonic systems from reaching maturity and replacing traditional RF solutions [14, 15]. Meanwhile, advances in integrated photonics [16–21], driven by the compelling economics of ever smaller footprint and lower power consumption, have created new possibilities and opportunities for RF photonics. Commercialized wafer scale fabrication of III-V, dielectrics, elemental semiconductor and nonlinear crystals have solved key challenges for the co-integration of lasers, modulators, photodetectors, and passive components, and have paved the road for integrated RF photonics to bring it closer towards commercial applications.

We review our recent work on RF and microwave photonic applications of integrated micro-combs, including a reconfigurable RF photonic intensity differentiator, RF channelizer and others. By employing an on-chip nonlinear micro-ring resonator (MRR), we generate a broadband Kerr comb based on soliton crystals, with a record low FSR of 49GHz, generating a large number of comb lines and use it as a high-quality multi-wavelength source for a transversal differentiator. By programming and shaping the power of individual comb lines according to corresponding tap weights, reconfigurable intensity differentiators with variable differentiation orders can be achieved. Detailed analyses of the operation principle and experimental demonstrations of fractional, 1st, 2nd, and 3rd order differentiations are performed.

As one of the most powerful tools in RF photonic systems, optical frequency combs can serve as multi-wavelength sources and establish multiple RF channels, and thus can greatly increase the capacity for transmission and performance for transversal processors [22–26]. Unfortunately, traditional approaches like discrete laser arrays, mode-locked lasers, or cascaded modulators all have limitations of one form or another, such as the cost, ability to be integrated or the number of available wavelengths, and thus pose challenges for integrated RF photonic systems.

Micro-comb sources, particularly those based on novel CMOS-compatible platforms [27, 28], offer new possibilities for integrated RF photonics. In 2008–10, new platforms for nonlinear optics, including Hydex [27, 29–36] and silicon nitride [37], were introduced that exhibit negligible nonlinear absorption in the telecom band, a moderate nonlinear parameter and extremely high nonlinear figure of merit, which are ideal for micro-comb generation. Following the first report of Kerr frequency comb sources in 2007 [38], the first integrated CMOS compatible integrated optical parametric oscillators were reported in 2010 [27, 37], and since then this field has exploded. Many cutting-edge applications have been demonstrated based on CMOS-compatible micro-combs, ranging from filter-driven mode-locked lasers [39–42] to quantum physics [43–48]. Meanwhile, for RF photonics, many new applications have been investigated with the fundamental advantages of micro-combs demonstrated [49–51].

As compared with conventional intensity differentiators based on laser diode arrays, the cost, size and complexity can be greatly reduced. Our scheme enables a high degree of reconfigurability in terms of processing functions and operation bandwidth, offering a reconfigurable platform for diverse microwave photonic computing functions. By programming the waveshaper’s tap coefficients, our scheme can also apply to other computing functions such as Hilbert transforms. The operation bandwidth is fundamentally limited by the Nyquist zone, which is determined by the comb spacing. In our case, the frequency spacing of the Kerr comb generated by the nonlinear MRR reaches 200 GHz, thus leading to a potential operation bandwidth of over 100 GHz.
metric oscillation in a

Programmable Single

Compact on

Tunable Programmable Microwave Photonic Filters

guration of Silicon Microring Resonator

Flat magnitude response for wideband
together ultrawideband pulses using a chirped intensity modulator and

Broadband and wide-range feedback
tuning scheme for phase-locked loop stabilization of tunable
electrooptic oscillators,

Stable RF delivery by lambda dispersion-induced optical tunable delay,

RF transversal filter using an AOTF,


Wideband RF photonic in-phase and quadrature-phase generation,


Optical generation of polarity- and shape-
switchable ultrawideband pulses using a chirped intensity modulator and

1st order MZ interferometer,


Nonlinear Integrated Microwave Photonics,


Integrated microwave photonics,


Compact tunable Si photonic differential-equation solver for
general linear time-invariant systems,


Nested Configuration of Silicon Microring Resonator
With Multiple Coupling Regimes,


Compact on-chip 1 x 2 wavelength
selective switch based on silicon microring resonator with nested pairs of
subwings,


On-Chip Tunable Second-Order Differential-Equation
Solver Based on a Silicon Photonic Mode-Split Microring Resonator,


Passive silicon photonic devices for microwave
photonic signal processing,

Optics Communications, 373, 44-52 (2016).

Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,

APL Photonics, 2 (1), 056103 (2017).

Microwave Photonic Filters Based on Optical Frequency Comb,


True time delays using conversion/dispersion with
flat magnitude response for wideband analog RF signals,

Optics Express, 20 (8), 8219-8227 (2012).

Supercontinuum-based 10-GHz flat-topped optical
frequency comb generation,

Optics Express, 21 (5), 6045-6052 (2013).

High-Power Broadly Tunable Electrooptic Frequency Comb Generator,


Tunable Programmable Microwave Photonic Filters
based on an Optical Frequency Comb,

IEEE Trans. on Microwave Theory, 58 (11), 3269-3278 (2010).

CMOS-compatible integrated optical hyper-
parametric oscillator,