The cosmic ray detector for the NICA collider

Marcin Bielewicz1,2,∗, Martyna Grodzicka-Kobylika1, Bartosz Maksiak1, Sławomir Mianowski1, Damian Pszczoł1, Paweł Siębczynski1, Joanna Stepaniak1, Łukasz Swiderski1, Tomasz Szychowski1, Maciej Linczuk3, Daniel Wielanek3, Adam Kisiel1,2, Grzegorz Kasprzowicz3, Krzysztof Pozniak3, Wojciech Zaborotny3, Ryszard Romaniuk3, Arkadiusz Chlopik1, Aleksandr Bancer1, Krystian Grodzicki1, Adam Dudzinski1, Elżbieta Jaworska1, Elżbieta Strugalska-Gola1, Marcin Szuta1, Marek J. Perty1,2,22, Maciej Rybczynski4, Zbigniew Włodarczyk4, Grzegorz Stefanek4, Paweł Kankiewicz4, Agnieszka Synfeld-Kazuch1, and Michalina Milewicz-Zalewska2

1National Centre for Nuclear Research, ul. Andrzeja Sołtana7, 05-400 Otwock, Swierk, Poland
2Joint Institute of Nuclear Research, Joliot-Curie, 6 Dubna, Moscow region, Russia, 141980
3Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland
4Jan Kochanowski University, ul. Zeromskiego 5, 25-369 Kielce, Poland

∗e-mail: marcin.bielewicz@ncbj.gov.pl

Abstract. Multi-Purpose Detector (MPD) is a main part of a new Ion Collider fAcility (NICA) located in Dubna, Russia. To increase MPD functionality, it was proposed to add an additional muon trigger system for off-beam calibration of the MPD sub-detectors and for rejection of cosmic ray background during experiments. The system could also be very useful for astrophysical observations of cosmic showers initiated by high energy primary particles. This article describes the main goals of MCORD detector and the early stage of MCORD design, based on plastic scintillators with silicon photomultiplier photodetectors (SiPM) for scintillation readout and electronic system based on MicroTCA standard.

1 Introduction

The new collider complex NICA (Nuclotron-based Ion Collider fAcility) with two circle accelerators (Booster and Nuclotron) is currently under construction at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia [1]. At the first stage of operation the main detection system at NICA will be the Multi-Purpose Detector (MPD) [2] (Fig.1).

Figure 1. Cross Section of the MPD - the main NICA detection system. [2]

2 Motivation

The MPD was designed to identify particles emitted during ion-ion collisions. Recently, it was proposed to increase MPD functionality by installing an additional detection system surrounding the MPD, namely Muon Cosmic Ray Detector (MCORD), see Fig.2. The motivation for designing and constructing the MCORD detector is:

1. Providing trigger for testing and calibration of other sub-detector systems before completion of MPD, e.g.: Time of Flight (TOF), Electromagnetic Calorimeter (ECAL) and Time Projection Chamber (TPC).
2. Identification of muons produced as a result of ion-ion collisions inside the MPD.
3. Providing data for astrophysical observations (similarly to ACORDE detector in ALICE experiment at LHC [3]), e.g. deducing directionality of muon showers [4].
4. Vetoing for rare events research to reduce cosmic ray background.

3 MCORD System Description

MCORD will provide information about the time, position, direction and amplitude of signal induced by charged
particles passing through the scintillators. Since the MPD is a large scale device (about 8 meters in length and 6 meters in diameter), the MCORD needs to be designed with relatively cheap materials and cost efficient assembly. It was decided to use plastic scintillator bars equipped with wavelength shifting fibers. The MPD detector comprises a large magnet around which the MCORD detector should be installed, light readout will be done by means of silicon photomultipliers (SiPMs) [5], as they are insensitive to magnetic field. Each MCORD module (Fig.3) will consist of three sections (Fig.4) and each section will comprise 8 plastic scintillators with aluminum cover. At each end of a scintillator there will be a SiPM photodetector with a dedicated power supply, a temperature compensation circuit and an amplifier. As a result, one MCORD module will comprise 48 measurement channels. The SiPMs and related electronics (Fig.5) will be embedded into scintillators aluminum cover with end-cups that will shield the scintillators from light and protect them from dust and water. The output signal from a SiPM will be amplified and shaped in an analog front end module (Fig.5) and subsequently will be sent to a MicroTCA System (MicroTCA® is a modular, open standard for building high performance switched fabric computer systems in a small form factor [6]) (Fig.6). The TCA standard allows to install up to 12 AMC card (Advanced Mezzanine Card). Industry standard AMC-FMC carriers will be used for MCORD system. FMC (FPGA Mezzanine Card) is an ANSI standard that provides a standard mezzanine card form factor, connectors, and modular interface to an FPGA located on a base board (Fig.7). For more information about light production and propagation, analog and digital electronic system see [7, 8].
The MCORD modules consist of three sections, eight plastic scintillators with aluminum cover. At each end of three sections (Fig.4) and each section will comprise different detector layers allowing for particle tracking. The MCORD detector will be arranged in a barrel shape around the shielding of the MPD detector (Fig.2). MicroTCA4 crate with 12 slots PICMG (Fig.6). The separated electronic PCBs with SiPMs, amplifier and power supply. The digital analysis system will be based on the MicroTCA standard with FPGA modules. The proposed hardware can be modified upon requests to change required number of channels or spatial resolution.

The separated electronic PCBs with SiPMs, amplifier and power supply.

4 Summary

This work is a part of the activities of a NICA-PL Consortium. The paper presents the current concept of a modular cosmic muon trigger system for the MPD detector at NICA facility. Detection system is based on low cost elements (plastic scintillators with SiPMs photodetectors). The digital analysis system will be based on the MicroTCA standard with FPGA modules. The proposed hardware can be modified upon requests to change required number of channels or spatial resolution.

4.1 Acknowledgements

This work is partially supported by Research Program for the research group at JINR and research centres in Poland 2019 and Polish National Science Centre (NCN) grant 2016/23/B/ST2/00692. This work is a part of Polish Consortium for NICA program (NICA-PL).

References