Non-strange dibaryons studied in coherent double neutral-meson photoproduction on the deuteron

Takatsugu Ishikawa1,∗, Hisako Fujimura1, Hiroshi Fukasawa1, Ryo Hashimoto1, Qinghua He1, Yuki Honda1, Takahiro Iwata2, Shun Kaida1, Hiroki Kanda3, Jiroha Kasagi4, Atsushi Kawano4, Shuzo Kuwashaki4, Kazushige Maeda5, Shin’ichi Masumoto5, Manabu Miyabe1, Fusashi Miyahara1, Keiichi Mochizuki1, Norihito Muramatsu1, Akikiho Nakamura1, Ken’ichi Nawa1, Shohei Ogushi1, Yasuyuki Okada1, Ken’yu Okamura1, Yoshihito Onodera1, Kyoicho Ozawa6, Yasunobu Sakamoto6, Hajime Shimizu1, Hiroyuki Sugai1, Koutaku Suzuki1, Yusuhisa Tajima2, Shin’ichi Takahashi1, Yasuke Taniguchi1, Yasuke Tsuchikawa1, Hirohito Yamazaki1, Ryoji Yamazaki1, and Hiroshi Yoshida2

1Research Center for Electron Photon Science (ELPH), Tohoku University, Sendai 982-0826, Japan
2Department of Physics, Yamagata University, Yamagata 990-8560, Japan
3Department of Physics, Tohoku University, Sendai 980-8578, Japan
4Department of Information Science, Tohoku Gakuin University, Sendai 981-3193, Japan
5Department of Physics, University of Tokyo, Tokyo 113-0033, Japan
6Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan

Abstract. The $B = 2$ bound/resonance state (dibaryon) is an interesting object, which can be a molecule consisting of two baryons or a spatially compact hexaquark hadron object. The $yd \rightarrow \pi^0\pi^0d$ reaction has been experimentally investigated at incident energies ranging from 0.58 to 1.15 GeV to study non-strange dibaryons. The angular distributions of deuteron emission in the yd center-of-mass energy cannot be reproduced by quasi-free production of two neutral pions followed by deuteron coalescence. Additionally, a 2.14-GeV peak is observed in the π^0d invariant mass distribution. These suggest a sequential process such as $yd \rightarrow R_8 \rightarrow \pi^0R_N \rightarrow \pi^0\pi^0d$ with an isoscalar dibaryon R_8 and an isovector dibaryon R_N. Since the mass of the observed isoscalar dibaryons are close to the sum of the nucleon (N) and nucleon resonance (N') masses, an S-wave NN' molecule may play a role as a doorway to a dibaryon.

1 Introduction

The structure of hadrons is one of the most important subjects to be studied in the non-perturbative domain of quantum chromodynamics. A $B = 2$ system (dibaryon) is an interesting object to study its basic configuration from a molecule-like state consisting of two baryons such as the deuteron to a spatially-compact hexaquark hadron state. Understanding dibaryons would not only give a clue to the solution of the current problem in hadron physics but also provide an insight into the nuclear equation of state and the interior of a neutron star [1].

The search for dibaryons has a long history [2]. Recent observations of the $d^*(2380)$ dibaryon [3, 4] with $M = 2.37$ GeV, $\Gamma = 0.07$ GeV, and $I(J^{\pi}) = 0(3^+)$ in the $pn \rightarrow \pi^0\pi^0d$ reaction have opened the door to study non-strange dibaryons. The $d^*(2380)$ may be attributed to a spatially compact hexaquark hadron state and/or an isoscalar $\Delta\Delta$ quasi-bound state D_{01}, which was predicted by Dyson and Xuong [5] as a member of the sextet non-strange dibaryons D_{12} with isospin I and spin J. Many experimental investigations of the sextet members have been made, and candidates for almost all the members are found: the deuteron D_{01}, the $^5S_0-NN$ virtual state D_{10}, an isovector ΔN state D_{12} in the $\pi^+d \rightarrow pp$ reaction [6–9], an isotensor ΔN state D_{21} in the quasi-free $pp \rightarrow \pi^-\pi^+pp$ reaction [10], and an $I = 3 \Delta\Delta$ dibaryon D_{30} in the $pp \rightarrow \pi^-\pi^+\pi^0pp$ reaction [11]. However, the dibaryonic interpretations of the experimental data for some members are still questionable.

From now on, we focus on D_{12} which is a key state of the sextet dibaryons. Experimentally, the evidence for D_{12} is given as the 3P_2 multipole strength at $M = 2.18$ GeV in π^0d elastic scattering by a partial-wave analysis [7]. The corresponding $^3D_2-pp$ amplitude also shows the same structure in the $\pi^-d \rightarrow pp$ reaction [8]. The SAID group provides a pole for D_{12} [9] from a combined analysis of nd elastic scattering, the $\pi^-d \rightarrow pp$ reaction, and pp elastic scattering. Hoshizaki shows the D_{12} state is required to explain the pp and nd phase parameters [12], and excludes the interpretation of the state as a cusp or a virtual state [13]. Platonova and Kukulin also claim that conventional meson-exchange models do not explain the $pp \rightarrow \pi^-d$ reaction [14]. Recently, preliminary results for D_{12} candidates observed in the $yd \rightarrow \pi^-\pi^+d$ reaction are reported [15, 16], showing a peak with $M \approx 2.1–2.2$ GeV and $\Gamma \approx 0.1$ GeV in both the π^0d invariant-mass distribu-
tions. The peak position is close to the sum of the N and Δ masses, and the width is much narrower than the Δ width. Although these considerations and observations seem to show the existence of Δ_{12}, a possibility of quasi-free (QF) Δ production cannot be excluded in the interpretation of the experimental data.

There is no doubt that the π^0d system has a resonance-like structure around 2.15 GeV. We study the $\gamma d \rightarrow \pi^0s^0d$ reaction, aiming to find and observe Δ_{12} in the π^0d subsystem. Possible production mechanisms for the $\gamma d \rightarrow \pi^0s^0d$ reaction are classified as follows:

1. dibaryon production: sequential π^0s^0 emission from the deuteron with intermediate isoscalar dibaryon R_{IS} and isovector dibaryon R_{IV} ($\gamma d \rightarrow R_{IS} \rightarrow \pi^0R_{IV} \rightarrow \pi^0s^0d$).

2. QF-$\pi\pi$ production: π^0s^0 is photoproduced on the QF participant nucleon N_p, followed by coalescence with the spectator nucleon N_s into a deuteron.

3. QF-π production: π^0 is photoproduced on N_p, followed by coalescence with N_s into R_{IV}, finally R_{IV} decays into π^0d.

4. direct-$\pi\pi$ production: π^0s^0 is directly photoproduced from the deuteron.

In the QF-$\pi\pi$ production mechanism, coalescence into a deuteron requires that the two n^0s should be emitted so as to compensate for the momentum given to N_p. In this case, the angular distribution of deuteron emission in the γd center-of-mass (CM) frame shows strongly backward peaking. As for the QF-π production mechanism, the condition for coalescence into R_{IV} makes the distribution sideways peaking at the incident photon energy around 1 GeV. A completely different rather-flat distribution is obtained in the dibaryon and direct-$\pi\pi$ production mechanisms. It should be noted that the angular distributions are mainly determined by the deuteron or R_{IV} masses and that the other detailed kinematic conditions do not affect the behaviors of the angular distributions. The most serious background of QF N^* or Δ excitation is kinematically separable from the dibaryon production mechanism.

2 Experiment

A series of meson photoproduction experiments [21] were carried out using the energy-tagged photon beams [22] at the Research Center for Electron Photon Science (ELPH), Tohoku University, Japan. The photon beam was produced by a bremsstrahlung process with a carbon fiber (radiator) with a diameter of 11 μm from the 0.93 and 1.20 GeV circulating electrons in a synchrotron called the STretcher Booster (STB) ring [23]. Each produced photon was energy-tagged by measuring the trajectory of the corresponding post-bremsstrahlung electron with a photon-tagging detector STB-Tagger II in the bending magnet just after the radiator location. The tagging energy of the photon beam ranged from 0.57 to 0.88 and from 0.74 to 1.15 GeV for 0.93- and 1.20-GeV circulating electrons, respectively. The target used in the experiments was liquid deuterium with a thickness of 45.9 mm. The incident photon energies for the two circulating electron energies give γd center of mass energies $W_{\gamma d}$ from 2.38 to 2.61 and from 2.51 to 2.80 GeV. The lowest photon energy for the 0.93-GeV circulating electrons corresponds to the centroid of the $d^*(2380)$ resonance.

All the final-state particles in the $\gamma d \rightarrow \pi^0s^0d$ reaction were measured using an electromagnetic calorimeter (EMC) complex, FOREST [24]. FOREST consists of three different EMCs as shown in Fig. 2: the forward EMC consists of 192 pure CsI crystals, the central consists of 252 lead scintillating fiber modules, and the backward consists of 62 lead glass Cherenkov counters, respectively. A plastic scintillating fiber hodoscope (PSH) is placed in front of each calorimeter to identify charged particles. The solid angle of FOREST is approximately 88% in total. The typical photon-tagging rates were 2.8 and 20 MHz, and the photon transmittance ratios (so-called tagging efficiency) were approximately 42% and 53% [22] for the 0.93 and 1.20 circulating electrons, respectively. The trigger condition of the data acquisition (DAQ) was made for detecting more than one final-state particles in coincidence with a photon-tagging signal. The details of the trigger condition are described elsewhere [24]. The average trigger rates were 1.1 and 1.7 kHz, and the average DAQ efficiency.
of photon-tagging signals after the counting-loss correction by the corresponding photon transmittance. The N_j is a product of multiplying N_e and the DAQ efficiency. The acceptance of $\gamma\gamma\gamma\gamma\gamma \gamma d$ detection is estimated by a Monte-Carlo simulation based on Geant4 [28]. Here, the event generation is modified from pure phase-space generation to reproduce the following three measured distributions: the $\pi\pi$ invariant mass $M_{\pi\pi}$, the nd invariant mass M_{nd}, and the deuteron emission angle $\cos \theta_d$ in the γd-CM frame.

Fig. 3 shows the total cross section σ as a function of the γd CM energy $W_{\gamma d}$. The systematic uncertainty of σ includes the uncertainty of event selection in the kinematic fit, that of acceptance owing to the uncertainties of the $M_{\pi\pi}$, M_{nd}, and $\cos \theta_d$ distributions in event generation of the simulation, that of detection efficiency of deuterons, and that of normalization resulting from the numbers of target deuterons and incident photons.

The excitation function is not monotonically increasing but shows resonance-like behavior peaked at around 2.47 and 2.63 GeV. The two-peak structure is similar to the excitation function of the $\gamma N \rightarrow \pi^0\pi^0 N$ reaction with two peaks at the γN-CM energy $W_{\gamma N}$ of ~ 1.5 and ~ 1.7 GeV [17, 18], corresponding to the second- and third-resonance regions of the nucleon. A naive interpretation of this behavior may be a QF excitation of the nucleon in the deuteron, followed by coalescence into the deuteron. The solid curve in Fig. 3 shows a calculation performed by Fix and Ahrenhövel (FA) based on the QF-$\pi \pi$ produc-
tion mechanism [19]. The calculation reproduces the data surprisingly well. A calculation performed by Egorov and Fix based [20] on the QF-ππ mechanism also gives a similar excitation function as shown in Fig. 3 (dotted curve). However, as discussed later in section 4.2, the kinematic condition for the obtained data completely differs from the QF-ππ and QF-π production mechanisms.

Although the measured cross sections are well-reproduced in the FA calculation, the discrepancy seems observed in the lowest incident photon energy region (~0.57 GeV). This discrepancy may be explained by excitation of the d*(2380) dibaryon resonance. The d*(2380) contribution is estimated by fitting the function

$$\sigma(W_{yd}) = \sigma_{d*}BW(W_{yd}) + \sigma_{FA}(W_{yd})$$ \hspace{1cm} (2)

to the data obtained for the 0.92 GeV circulating electrons, where BW(W_{yd}) denotes the relativistic Breit-Wigner function [29] corresponding to the expected d*(2380) contribution with a centroid of M = 2.37 GeV and a width of Γ = 68 MeV. The σ_{FA} stands for the total cross section in the FA calculation. The χ^2/df of the fit is 10.1/15, and the obtained parameter is

$$\sigma_{d*} = 18.4 \pm 9.2 \text{ nb}.$$ \hspace{1cm} (3)

The d*(2380) contribution is not statistically significant, and the upper limit of the total cross section is found to be 34 nb at W_{yd} = 2.37 GeV (90% confidence level).

4 Differential cross sections

The differential cross sections, dσ/dM_{πd}, dσ/dM_{nd}, and dσ/dΩ_d, are obtained for each group of photon-tagging channels divided into four groups. All the differential cross sections obtained are plotted in Fig. 2 in Ref. [26]. Here, we focus on the M_{nd} and dσ/dΩ_d distributions for the highest photon-tagging group. The M_{nd} distribution is investigated to determine the mass and width of a peak near 2.15 GeV. The differential cross section as a function of the deuteron emission angle dσ/dΩ_d is shown to study the reaction mechanism for the γd → π^0π^0d reaction.

4.1 M_{nd} distribution

The M_{nd} distribution shows two peaks for the higher incident photon energies. The centroid of the low-mass peak is ~ 2.15 GeV independently of the incident energy. However, that of the high-mass peak decreases with a decrease in the incident energy, and finally the two peaks are merged into a bump. The high-mass peak reflects the appearance of the 2.15-GeV peak in the M_{nd} distribution between the other pion and deuteron (reflection). This interpretation becomes obvious by looking at the correlation between the two M_{nd} (see Fig. 3(b) in Ref. [26]). The M_{nd} distribution of the FA calculation shown in Fig. 4 (dotted) also shows a similar distribution having two peaks, which are caused by QF π^0Δ production.

We have analyzed the M_{nd} distribution in detail. We consider the sequential (dibaryon and QF-π production mechanisms) and non-sequential (QF-ππ and direct-ππ production mechanisms) processes of two-π^0 emission. Here, the contribution from the latter process is assumed to be proportional to the phase space. The mass and width are determined by fitting a function, expressed as a sum of a Breit-Wigner (BW) peak, its reflection, and phase-space contributions, to the data. Contributions of a BW peak and its reflection are summed up at an amplitude level. Each contribution is plotted in a dotted dotted curve (magenta). The dotted curve (green) correspond to the FA calculations with arbitrary normalization.

Figure 4. Typical nd invariant mass M_{nd} distribution. The dashed curves (red) show the fitted functions, expressed as a sum of a Breit-Wigner (BW) peak, its reflection, and phase-space contributions, to the data. Contributions of a BW peak and its reflection are summed up at an amplitude level. Each contribution is plotted in a dotted dotted curve (magenta). The dotted curve (green) correspond to the FA calculations with arbitrary normalization.

4.2 Angular distribution of deuteron emission

A great difference between the FA calculation based on the QF-ππ mechanism and the experimental data appears in the angular distribution of deuteron emission dσ/dΩ_d in Fig. 5. The experimentally obtained dσ/dΩ_d shows...
a gradually-increasing behavior with decrease of \(\cos \theta_d \). While the FA calculation based on the QF-\(\pi \pi \) production mechanism provides a strongly backward-peak behavior. The QF-\(\pi \) production mechanism, giving a sideways peak in \(d\sigma/d\Omega_d \) at high incident energies in Fig. 5 (dotted curve in magenta), is also rejected. A sideways peak corresponding to the QF-\(\pi \) production mechanism is not observed in the experimental distribution. Since neither backward nor sideways peaks are not observed in the \(d\sigma/d\Omega_d \) distribution, the sequential and non-sequential processes in section 4 one-to-one correspond to the dibaryon and direct-\(\pi \pi \) production mechanisms, respectively.

![Figure 5. Typical differential cross section \(d\sigma/d\Omega_d \). The dotted (green) and dashed (magenta) curves show \(d\sigma/d\Omega_d \) as a function of \(\cos \theta_d \) for the QF-\(\pi \pi \) and QF-\(\pi \) mechanisms, respectively, where their yields are normalized so that the total cross section should be the same. The lower hatched histogram shows the systematic errors of \(d\sigma/d\Omega_d \).](image)

We conclude that the peak at 2.14 GeV in the \(M_{sd} \) spectrum is attributed to a dibaryon state, which can be generated in neither the QF-\(\pi \pi \) production mechanism nor the QF-\(\pi \) production mechanism. This conclusion gives the dominant sequential process \(\gamma d \rightarrow R_{IS} \rightarrow \pi^0 R_{IV} \rightarrow \pi^0 \pi^0 d \), and motivates the following interpretation for the resonance-like structure in Fig. 3: a dibaryon state can be formed from a deuteron and a photon; the generated state may be a loosely-coupled molecular state; it plays a role as a doorway to a more complicated dibaryon state. Of particular importance is the fact that there is no spectator nucleon in the observed reaction. We fit a function expressed by a sum of three BW peaks and phase-space contributions to the data. The function is given by

\[
\sigma(W_{sd}) = \sigma_{PS}(W_{sd}) \left[1 + \sum_{i=1}^{2} \alpha_i L_{iM_i, \Gamma_i}(W_{sd}) \right],
\]

where \(\sigma_{PS}(W_{sd}) \) denotes \(\sigma \) for the phase-space contribution, \(L_{iM_i, \Gamma_i}(W_{sd}) \) represents a BW function with the centroid of \(M \) and width of \(\Gamma \). Here, three BW peaks are summed up at a cross section level. The \(M_0 = 2.37 \) GeV and \(\Gamma_0 = 0.07 \) GeV are fixed to the values for \(d^* (2380) \) [4], and the absolute values for \(\sigma_{PS}(W_{sd}) \) are determined to fit the phase-space component in each \(M_{sd} \) spectrum (see Fig. 4). The fitted function and each contribution to it are also plotted in Fig. 3 (dashed-and-dotted curve in magenta). The obtained parameters for the two peaks are \((M_1, \Gamma_1) = (2.47, 0.12) \) GeV and \((M_2, \Gamma_2) = (2.63, 0.13) \) GeV. Isoscalar dibaryons appear not only at 2.37 GeV but also at 2.47 and 2.63 GeV. It should be noted that each observed peak may be comprised of several overlapping resonances and that the WASA-at-COSY data covering masses up to 2.56 GeV do not show any signature of the 2.47-GeV dibaryon.

5 Spin-parity

Information on the spin-parity of the dibaryon states has been deduced from angular distributions of \(\pi^0 \)s obtained for the events from \(M_{sd} = 2.05-2.25 \) GeV in Fig. 4. We define \(\pi_1 \) and \(\pi_2 \) as follows: \(\pi_2 \) is one of the two pions giving \(2.05 \leq M_{sd} < 2.25 \) GeV, and \(\pi_1 \) is the other pion. Here, we assume \(\pi_1 \) is emitted first in the dominant dibaryon production mechanism, leaving the \(\pi_2 d \) system with \(2.05 \leq M_{sd} < 2.25 \) GeV, and \(\pi_2 \) is emitted subsequently. We combine the data of the two highest-energy groups, which covers \(W_{sd} \) from 2.66 to 2.80 GeV, to analyze angular distributions. Thus, we expect the reaction sequence \(\gamma d \rightarrow R_{IS}(2.63 \text{ GeV}) \rightarrow \pi_1 R_{IV}(2.14 \text{ GeV}) \rightarrow \pi_1 \pi_2 d \) together with the direct \(\pi_1 \pi_2 \) production mechanism. Fig. 6(a) shows the deduced \(\pi_1 \) angular distribution after the acceptance correction is applied in the \(\gamma d \)-CM frame with the \(z \) axis taken along the incident photon direction. The experimental distribution is well-reproduced by a sum of two terms, constant and proportional to \(\cos \theta \). This \(\cos \theta \) dependence can be understood as a result of interference between \(\pi_1 \)-emission amplitudes with different parities. The \(\pi_2 \) angular distribution in the rest frame of the \(\pi_2 d \) system (\(\pi_1-\pi_2 \) angular correlation) after the acceptance correction is applied is shown in Fig. 6(b), where the \(z \) axis is defined to be opposite to the direction of \(\pi_1 \) emission. Unlike Fig. 6(a), the distribution shows almost 90° symmetry. This implies that the 2.14-GeV resonance is made of a single \(J^p \) state or mixed states with the same parity (no interference between different parities). The FA calculation (provided in the same kinematic condition) completely fails to reproduce both the angular distributions, due to the difference in the underlying reaction mechanism as discussed previously (QF-\(\pi \pi \) production mechanism adopted in the FA calculation is not observed in the experiment). A sharp peak at 0° in Fig. 6(a) is the reflection of the backward peak in \(d\sigma/d\Omega_d \). In Fig. 6(b), the reflection takes an upward-convex shape being opposite to the experiment.

We calculate the \(\pi_1 \) and \(\pi_2 \) angular distributions for the reaction sequence \(\gamma d \rightarrow R_1 \rightarrow \pi_1 R_2 \rightarrow \pi_1 \pi_2 d \) using the density matrix (statistical tensor) formalism [31], where spins of \(R_1 \) and \(R_2 \) are denoted by \(J_1 \) and \(J_2 \), respectively. The formalism incorporates the exchange symmetry between \(\pi_1 \) and \(\pi_2 \). A possible contribution from
non-sequential direct \(\pi^0\pi^0\) production mechanism is assumed to be proportional to the phase-space contribution, of which the fraction is determined from the \(\mathcal{M}_{nd}\) spectrum in Fig. 4 for each photon-tagging group. Since the \(\pi_2\) angular distribution is almost symmetric with respect to \(\cos\theta_{\pi_2} = 0\), the interference effect may be small. Thus, the contributions from the sequential dibaryon production and non-sequential direct \(\pi^0\pi^0\) production mechanisms are summed up incoherently. A set of the amplitudes of sequential processes \(A_{\Lambda\Lambda}\) is determined for all the \(\Lambda = (L_0, L_1, J_1, J_2, L_2)\) combinations to reproduce the measured \(\pi_1\) and \(\pi_2\) angular distributions simultaneously (20 data points), where \(L_0, L_1,\) and \(L_2 \leq 2\) denote angular momenta carried by the incident photon, \(\pi_1\) emission, and \(\pi_2\) emission, respectively. An amplitude for a mixed state is given by \(A_{\Lambda\Lambda} = (A_{\Lambda\Lambda}A_{\Lambda\Lambda}^{\ast})^{1/2}\). The S-wave \(NN^*\) molecular states are assumed to play a role as a doorway to \(R_1\) since all the observed isoscalar dibaryons are close to the sum of \(NN^*\) masses as discussed in section 6. Here, the considered \(N^*\)s are \(D_{15}(1675), F_{15}(1680),\) and \(P_{13}(1720),\) which give dominant contributions in the \(\gamma N^* \rightarrow \pi^0\pi^0N\) reaction in the relevant energy region [18]. Hence, \(J^P_2\)'s under consideration are \(1^+, 2^+\), and \(3^+\). Additionally, \(R_2\) is assumed to be a single resonance, namely \(J_2 = J'_2\) and \(L_2 = L'_2\). In Fig. 6, also shown are the angular distributions calculated for \(J'_2 = 1^+, 2^+,\) and \(3^+\). The \(J'_2 = 0^+\) assignments are already excluded because of an isotropic distribution for \(\pi_2\) emission. The assignments of \(J'_2 = 1^+, 2^+,\) and \(3^+\) show almost the same quality to reproduce the angular distributions (\(29 < \chi^2 < 32\)). We reject the \(J'_2 = 1^+\) and \(2^+\) assignments, giving worse distributions \((\chi^2 = 47\) and 55\)), respectively, with a confidence level of higher than 99.7\% (3\(\sigma\)), and leave the possibility of \(J'_2 = 1^+, 2^+,\) and \(3^+\). Regarding \(J^P_1\) major components are \(1^+\) (\(\sim 70\%\)) and \(2^+\) (\(\sim 20\%\)) for the case of \(J^P_2 = 1^+\) and \(2^+\), while they are distributed widely to \(J^P_1 = 1^+, 2^+,\) and \(3^+\) for \(J^P_2 = 3^+\). The \(J'_2 = 2^+\) assignment not only coincides with the energy dependence of the \(\bar{D}_{12}-nd\) amplitude, but also supports the existence of the predicted \(D_{12}\) state at 2.14 GeV. The \(J'_2 = 3^+\) assignment is consistent with the energy dependence of the \(\bar{D}_{12}-nd\) amplitude (about a half strength of \(\bar{D}_{12}\)). There is no experimental sign for a \(1^+\) state, although two isovector \(0^+\) and \(2^+\) states at 2.2 GeV have been reported recently [32]. Most probably, \(R_{IS}(2.63\) GeV) is a mixing state between \(J^P_{1} = 1^+ (\sim 70\%)\) and \(2^+ (\sim 20\%)\), and \(J^P_{2} = 2^+\) for \(R_{IV}(2.14\) GeV).

6 Discussion

A rather-flat angular distribution of deuteron emission completely differs from the QF-\(\pi\pi\) and QF-\(\pi\) production mechanisms. In addition, the \(M_{nd}\) distributions shows a peak at 2.14 GeV. The present work suggests a sequential process \(\gamma d \rightarrow R_{IS} \rightarrow \pi^0\pi^0 N \rightarrow \pi^0\pi^0 d\) is dominant with two 2.47- and 2.63-GeV \(R_{IS}\) and a 2.14-GeV \(R_{IV}\). Fig. 7 shows the deuteron hadronic excited spectrum. The three \(R_{IS}\)s are photo-excited from the deuteron with masses of 2.37, 2.47, and 2.63 GeV. The spin-parity of \(R_{IS}(2.37\) GeV) is \(3^+\), and that of \(R_{IS}(2.63\) GeV) is found to be most probably a mixing of \(1^+\) and \(2^+\). The \(R_{IS}(2.63\) GeV) decays into \(R_{IV}(2.14\) GeV) by emitting \(\pi^0\) with angular momenta of 0 and 1, and the \(R_{IV}(2.14\) GeV) decays into the deuteron by emitting \(\pi^0\) with an angular momentum of 1.

The sum of the nucleon \(N\) and \(N(1440)P_{11}\) nucleon resonance masses (the \(NN(1440)P_{11}\) mass) is very close to the \(R_{IS}(2.37\) GeV) mass. The masses of \(NN(1535)S_{11}\) and \(NN(1520)D_{13}\) masses are close to the

Figure 6. Acceptance-corrected angular distributions for \(\pi_1\) in the \(\gamma d\)-CM frame (\(z\) axis: the photon beam direction) (a), and for \(\pi_2\) in the \(\pi_1d\)-rest frame (\(z\) axis: the opposite direction to \(\pi_1\)) (b). Events with \(M_{nd} = 2.05-2.25\) GeV and \(W_{nd} = 2.66-2.80\) GeV are selected. The lower hatched histograms (cyan) show the corresponding systematic errors. The dashed curves (green) show the corresponding distributions in the FA calculations. The angular distributions are plotted with a shaded band (red) for \(J'_2 = 1^+, 2^+,\) and \(3^+\), and with dotted and dash-dotted curves (black) for \(J'_2 = 1^+\) and \(2^+\), respectively. The solid horizontal lines (magenta) show the phase-space contributions.
The total and differential cross sections have been measured for the $\gamma d \rightarrow \pi^0 n^0 d$ reaction at $E_\gamma = 0.75$–1.15 GeV. The measured angular distribution of deuteron emission is rather flat, suggesting that a sequential process $\gamma d \rightarrow R_{IS} \rightarrow n^0 R_{IV} \rightarrow \pi^0 n^0 d$ is dominant. The total cross section σ as a function of $W_{\gamma d}$ shows isoscalar dibaryons R_{IS} with masses of 2.47 and 2.63 GeV. The σ for R_{IS} with a mass of 2.37 GeV corresponding to the $d^*(2380)$ dibaryon observed by the WAST-at-COSY collaboration is found to be 18.4 ± 9.2 nb at the central mass. The $n^0 d$ invariant-mass distributions show an isovector dibaryon R_{IV} with a mass of 2.14 GeV. Most probably, $R_{IS}(2.63$ GeV) is interpreted as a mixing state between $J^P = 1^+$ ($\sim 70\%$) and 2^- ($\sim 20\%$), and $J^P = 2^+$ for $R_{IV}(2.14$ GeV). The details of the analysis and discussion can be found elsewhere [26].
Acknowledgments

The authors express their gratitude to the ELPH accelerator staff for stable operation of the accelerators in the FOREST experiments. They acknowledge Mr. Kazue Matsuda, Mr. Ken’ichi Nanbu, and Mr. Ikuro Nagasawa for their technical assistance in the FOREST experiments. They also thank Prof. Alexander I. Fix for the theoretical calculations of the cross sections and fruitful discussion. This work was supported in part by JSPS KAKENHI Grants Nos. 17340063, 19002003, 24600287, 16H02188, 19H01902, and 19H05141.

References