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Abstract. The study of fission yields has a major impact on the characterization
and understanding of the fission process and is mandatory for reactor applica-
tions. The mass and isotopic yields of the fission fragments have a direct influ-
ence on the predictions of fuel burn-up and decay heat. Moreover, these data are
requested for other studies as delayed neutron evaluation, antineutrino flux as-
sessment or reactor program. Today, the lack of covariance matrix associated to
evaluated fission yields induces overestimated uncertainties of mass yields since
these observables result from the sum of isotopic and isomeric yields. Our col-
laboration starts a new program in the field of the evaluation of fission products
in addition to the current experimental program. The goal is to define a new
methodology of evaluation based on statistical tests in order to provide the best
estimation with consistent sets of measurements. A ranking of solutions with
associated covariance based on Shannon’s entropy criterion is proposed for the
mass yields from 235U(nth, f ) reaction.

1 Introduction

Fission yields evaluation represents the synthesis of experimental and theoretical knowledges
in order to perform the best estimation of mass, isotopic and isomeric yields. Nevertheless
the estimation of thes observables are drastically based on experimental data since the mod-
elling of fission process is not predictive. Today, the output of fission yields evaluation is
available as a function of isotopic and isomeric yields. As a consequence, mass yields are
the sum of isobar nuclei and their quadratic sum to deduce uncertainties. So without any
correct covariance matrix, mass yields uncertainties are greater than isotopic yields. This
consequence is in contradiction with experimental knowledges where the abundance of mass
yields measurements is clearly dominant. Thus, we expect the uncertainties on this latter
observable to be lower than those of isotopic yields. Covariance matrix assessment depends
on the evaluation process and its validity assumes that all measurements are statistically in
agreement. These last years, different covariance matrices have been suggested but the ex-
perimental part of those are neglected in covariance evaluation [1][2][3][4] or applications
[5][6]. In the first part we present an assessment methodology based on statistical test. The
consideration of experimental data is crucial in the definition of the covariance of evaluations
where models are not predictive. A large range of data are listed in the EXFOR data bank but
a lot of them cover partial mass range. Data are also provided for different incident neutron
∗e-mail: kessedjian@lpsc.in2p3.fr
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Table 1. Numbers of common masses measured nÂ for the 8 datasets selected.

Cumulative Cumulative
Datasets measurement mass Index 0 1 2 3 4 5 6 7

number number

Maeck78 37 37 0 37
Thierens75 74 48 1 26 37
Diiorio77 138 64 2 37 36 64
Bail07 168 67 3 17 19 28 30
Tsoukatos68 232 67 4 37 36 64 28 64
Tsoukatos68b 260 67 5 23 20 28 13 28 28
Rosman83 267 72 6 0 0 1 2 1 0 7
Mathiews83 279 77 7 0 0 1 2 1 0 7 12

energy with different mass resolutions. The merge of data could generate the non-unique
solutions according to consistent datasets and will be presented in the second part. In the last
part, a ranking of solutions with associated covariance is proposed according to the Shannon’s
entropy criterion.

2 Experimental datasets

For this first work, the development of the evaluation method is focused on 235U(nth, f ) reac-
tion because of a large number available measurements. Thus, for this reaction the EXFOR
[7] database permits to cover all the mass range of fission products. Absolute mass yields
Y(A) is obtained using the self-normalization of this observable according to the equation:∑

A

Y(A) = Ω (1)

where Ω is the normalization factor, here Ω = 2. Unfortunately, for most of these measure-
ments, only statistical uncertainties is provided and systematic uncertainties are estimated in
the best cases. Thus the estimation of covariance matrix is non-obvious and represents an
important work which will be described in a future work.

2.1 Statistical test on the compatibility of available data

In order to reduce the data and to merge all the measurements for a given mass, it is necessary
to test the compatibility of the data. Two kind of data are presented: i) the full range mass
yield measurements but not necessarily with sufficient mass resolution (3σA < 1amu), ii)
uncomplete mass range generating relative measurements or relative normalizations by the
authors. Through the EXFOR [7] database, we chose to test the methodology only on 8
datasets: W.J. Maeck et al. [8], G. Diiorio et al. [9], H. Thierens et al. [10], A. Bail et
al. [11], M.P. Tsoukatos [12] with two different datasets, K.J. Rosman [13], C.K. Mathiews
[14]. These data correspond to 279 measurements over 77 masses (from A=77 to A=154
with a lack of A=122 in the data used in this work). With this selection, we cover both peaks,
allowing the absolute normalization of our evaluation. Thus, assuming independent Gaussian
distributions associated to the measurements without explicit information on correlation data,
we can calculate the χ2 using the nA common measured mass number. This value is compared
to the limited χ2 value (χ2

lim) given for a 99.5% confidence level. In practice, we calculate the
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Table 2. Relative standard deviations of normalization factor ki j between all datasets.

σ(ki j) (%) 0 1 2 3 4 5 6 7

0 0.0 1.4 0.2 0.7 0.2 0.3 - -
1 1.4 0.0 1.2 1.8 1.2 1.5 - -
2 0.2 1.2 0.0 0.6 0.2 0.2 12.2 33.8
3 0.7 1.8 0.6 0.0 0.6 0.8 3.8 28.2
4 0.2 1.2 0.2 0.6 0.0 0.2 12.2 33.8
5 0.3 1.5 0.2 0.8 0.2 0.0 - -
6 - - 12.2 3.8 12.2 - 0.0 25.0
7 - - 33.8 28.2 33.8 - 24.9 0.0

P − values corresponding to the integral on [χ2;∞] range of the χ2 distribution for (nÂ − 1)
degrees of freedom. The usable data are only those which pass the χ2 test and common mass
set Â are defined as following:

{Â} = {{A}i ∩ {A} j \ P − values (χ2
i j) > 1 −CL} (2)

where {A}i (respectively {A} j) are the measured masses of the ith (respectively jth) dataset and
CL is the confidence level chosen at CL=0.995 for this work. The common mass number
nÂ = Card({Â}) is presented in table 1. Formally, the comparison of each dataset N j(A) to
the reference one Ni(A) generates P − values lower than 1 − CL = 0.005 for all data set. So
we introduce a cross-normalization factor ki, j to maximize the number of measurements in
agreement considering all measurements as relative ones. This comparison is described by
the Cij vector following:

Cij = kij.Nj − Ni (3)

The normalization factors is obtained considering the minimum of the generalized χ2
g over

the {Â} measurements in agreement:

χ2
g(ki j) = CT

ij .Cov−1.Cij (4)

where Cov−1 is the inverse covariance matrix associated to Cij. nevertheless, at this step
without the covariance of the measurements, we consider that:

Cov(Ci j(A); Ci j(A′)) =
(
Var(Ni(A) + k2

i j.Var(N j(A′)
)
.δAA′ ∀A, A′ ∈ {Â} (5)

The standard deviations of the cross-normalization factors ki, j are presented in table 2. A
discussion about usable data management is described in reference [15] [16].

2.2 Cross-correlations of usable data

The relative normalization of each jth dataset, N j(A), to the (ith) reference one, Ni(A), is
defined by as follows:

Ri
j = ki,j.Nj (6)

According to the perturbation theory [17], the covariance of two normalized measurements
Ri

l(A) and Ri
j(A
′) is developed in the appendix (see Sect. Apppendix). For this study, without
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explicit experimental covariance matrices, most of components of variance-covariance are
considering null:

Cov(N j(A); Nl(A′)) = Var(N j(A)).δAA′ .δ jl ∀ j, l

For n measurements of mass A [18], the mean normalized mass rate R̄(A) is equal to:

R̄(A) = W1.Ri
1(A) + ... + Wn.Ri

n(A) =

 n∑
j=1

W j.Ri
j(A)

 (7)

For n measurements of mass A and m measurements of mass A′ [18], the covariance of mean
normalized mass rates is equal to (see Sect. Apppendix, eq. 23):

Cov(R̄(A); R̄(A′)) =

n,m∑
l, j=1

Wl Cl j W j (8)

with here Cl j = Cov(Ri
l(A); Ri

j(A
′)) for two different masses A and A′, thus (n×m) terms. The

weights are defined (see Sect. Apppendix, eq. 24):

W j=1,n =

 n∑
l

C−1
l j

 /
 n,n∑

l, j

C−1
l j

 and Wl=1,m =

m∑
j

C−1
l j /

m,m∑
l, j

C−1
l j (9)

with here Cl j = Cov(Ri
l(A); Ri

j(A)) for a same mass A with (n × n) covariance terms (or for a
same mass A′ with (m × m) covariance terms). Fig. 1 presents the cross-correlation of Ri

l(A)
data for two different reference sets. We note that the intensity of the correlation depends
drastically of the choice of normalization and the uncertainty of the normalization factor
σ(ki j) (see table 2).

3 Ranking of solutions based on Shannon’s entropy

According to the normalization of mass yields (see eq.1), the generalized perturbation theory
[17] allows to describe the variance-covariance matrix associated to the evaluation of the
mass yields:

Cov(Y(A); Y(A′))
Y(A).Y(A′)

=
∑
A′′

S Y(A)R̄(A′′)S Y(A′)R̄(A′′)
Var(R̄(A′′))

R̄2(A′′)

+
∑

A′′,A′′′
S Y(A)R̄(A′′).S Y(A′)R̄(A′′′).

Cov(R̄(A′′); R̄(A′′′))
R̄(A′′).R̄(A′′′)

(10)

with the sensitivity of mass yield Y(A) to mean mass rates R̄(A) and R̄(A′):

S Y(A)R̄(A) = 1 −
Y(A)

Ω
and S Y(A)R̄(A′) = −

Y(A′)
Ω

(11)

where Ω is the normalization factor, here Ω = 2 (see eq. 1). Fig. 2 shows the results for two
different reference sets and we remark that the structures of these correlations are strongly
different. Thus, the result of the mass yields evaluation depends on the initial datasets but
also the path of analysis. In order to discriminate all possible evaluations, the Shannon’s
entropy S S h is chosen as a useful criterion in order to assess the brewing of information [19].
It is given by the relation:

S S h = −
1

ln(2)

n∑
k=1

Piln(Pi) (12)
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Figure 1. Preliminary results. (up, left) Cross-correlations for 8 datasets after normalization to the 3th

set; (up, right) the same data in reference to the 4th set. These differences come from the uncertainties
of the normalization factor σ(ki j) which are not the same in both cases (see table 2). (down) Correlation
of mean mass rate Cov(R̄(A); R̄(A′)) in reference to set 3 (left) and the set 4 (right).

Where n is the number of eigenvalues. We approximate the probability with the weight of
each component of the eigenvalue decomposition to build a relative criterion. The weight of
the information is provided according to the following equation:

Pi =
EVi

tr(Corr)
(13)

where tr(Corr) = 77 is the correlation matrix trace (in this study, 77 mass yields are evalu-
ated).

4 Results and discussion

Results on pure experimental mass yields evaluation (modeless) are presented on Fig. 3. From
all solutions, we note that the maximum of Shannon’s entropy corresponds to the minimum of
variances and correlations values. This results is consistent to the Cramer-Rao theorem which
fixes the limits on minimal variances as the maximum of the Fischer’s information. Shannon’s
entropy corresponds to another quantification of information of the analysis and we expect
that the best searched solution corresponds to the minimum of variance-covariance and then
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Figure 2. Preliminary results. (left) Mass yields correlations for 8 datasets after normalization to the
3th set; (right) the same in reference to the 4th set.

the maximum of information. In this work, experimental data consideration is crucial for the
definition of the mass yields evaluation, the uncertainties and the correlations. The lack of
experimental covariance could induce a lower estimation of evaluated mass yields uncertain-
ties since the dealt information is overestimated. Correlations in the data limit the knowledge
provided by a dataset. Then the perspective of this work is to build a priori experimental
correlation matrix to fill the lacks in this analysis.

Figure 3. Preliminary results. (left) Mass yields evaluation proposed according to the maximum of
Shannon’s entropy ( 4th reference set ) in comparison to JEFF-3.3 [20] and ENDF/VIII.0 [21] libraries
and the calculation from GEFY6-2 [3]. (right) Relative standard deviation of evaluated mass yields in
comparison to those of evaluations or GEFY6-2.
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Appendix

The relative normalization of each jth dataset, N j(A), to the (ith) reference one, Ni(A), is
defined as follows:

Ri
j = ki,j.Nj (14)

Based on the minimum of χ2, the variance of normalization factor ki j is given by:

Var(ki j) =
1

K2
denom/ j

∑
Â

(
αi

i j(Â)
)2

Var(Ni(Â)) +
1

K4
denom/ j

∑
Â

(
α

j
i j(Â)

)2
Var(N j(Â))

+
2

K2
denom/ j

∑
Â

∑
Â′>Â

(
αi

i j(Â)
) (
αi

i j(Â′)
)
Cov(Ni(Â),Ni(Â))

+
2

K4
denom/ j

∑
Â

∑
Â′>Â

(
α

j
i j(Â)

) (
α

j
i j(Â

′)
)
Cov(N j(Â),N j(Â′) (15)

According to the perturbation theory, the covariance of two normalized measurements Ri
l(A)

and Ri
j(A
′) is described by the following equation [17]:

Cov(Ri
l(A),Ri

j(A
′)) =

Nl(A)N j(A′)
Kdénom/ jKdénom/l

∑
Â

∑
Â′

αi
i j(Â)αi

il(Â′)Cov(Ni(Â),Ni(Â′))

+
Nl(A)N j(A′)

Kdénom/ jK2
dénom/l

∑
Â

∑
Â′

αi
i j(Â)αl

il(Â′)Cov(Ni(Â),Nl(Â′))

+
Nl(A)N j(A′)

K2
dénom/ jKdénom/l

∑
Â

∑
Â′

αi
il(Â′α

j
i j(Â)Cov(N j(Â),Ni(Â′))

+
Nl(A)N j(A′)

K2
denom/lK

2
denom/ j

∑
Â

∑
Â′

α
j
i j(Â)αl

il(Â′)Cov(N j(Â),Nl(Â′))

+
kilN j(A)
Kdénom/ j

∑
Â′

αi
i j(Â′)Cov(Nl(A),Ni(Â′)) +

1
Kdénom/ j

∑
Â′

α
j
i j(Â

′)Cov(Nl(A),N j(Â′))


+

ki jNl(A)
Kdénom/l

∑
Â

αi
il(Â)Cov(N j(A′),Ni(Â)) +

1
Kdénom/l

∑
Â

α
j
il(Â)Cov(N j(A′),Nl(Â))


+ kilki jCov(Nl(A),N j(A′)) (16)

with:

αi
i j =

N j(Â)

σ2
i j

α
j
i j =

(Kdenom/ jNi(Â) − 2Knum/ jN j(Â))

σ2
i j

(17)

Knum/ j =
∑

Â

Ni(Â)N j(Â)

σ2
i j

Kdenom/ j =
∑

Â

N2
j (Â)

σ2
i j

(18)

For this study, without explicit experimental covariance matrices, most of components of
variance-covariance are considering null:

Cov(N j(A); Nl(A′)) = Var(N j(A)).δAA′ .δ jl ∀ j, l (19)
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For n measurements of mass A, the mean normalized mass rate R̄(A) is equal to [18]:

R̄(A) = W1.Ri
1(A) + ... + Wn.Ri

n(A) =

 n∑
j=1

W j.Ri
j(A)

 (20)

with:

W j=1,n =
C−1

1 j + ... + C−1
n j

C−1
11 + C−1

12 + ... + C−1
1n + C−1

21 + ... + C−1
2n + ... + C−1

n1 + .... + C−1
nn

=

 n∑
l

C−1
l j

 /
 n,n∑

l, j

C−1
l j

 (21)

with Cl j = Cov(Ri
l(A); Ri

j(A)) for a same mass A and its variance is given by the following
equation:

Var(R̄(A)) = 1/

 n,n∑
l j

C−1
l j

 (22)

For n measurements of mass A and m measurements of mass A′, the covariance of mean
normalized mass rates is equal to:

Cov(R̄(A); R̄(A′)) =

n,m∑
l, j=1

Wl Cl j W j (23)

with here Cl j = Cov(Ri
l(A); Ri

j(A
′)) for two different masses A and A′, thus (n×m) terms; and

the weights:

W j=1,n =

 n∑
l

C−1
l j

 /
 n,n∑

l, j

C−1
l j

 and Wl=1,m =

m∑
j

C−1
l j /

m,m∑
l, j

C−1
l j (24)

with here Cl j = Cov(Ri
l(A); Ri

j(A)) for a same mass A with (n × n) covariance terms (or for
same mass A′ with (m × m) covariance terms)
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