

The evolution of the ALICE O2 monitoring
system

Adam Wegrzynek1,*, and Gioacchino Vino2

1CERN, Geneva, Switzerland
2INFN, Bari, Italy

Abstract. The ALICE Experiment was designed to study the physics of
strongly interacting matter with heavy-ion collisions at the CERN LHC. A
major upgrade of the detector and computing model (O2, Offline-Online) is
currently ongoing. The ALICE O2 farm will consist of almost 1000 nodes
enabled to read out and process on-the-fly about 27 Tb/s of raw data. To
efficiently operate the experiment and the O2 facility a new monitoring
system was developed. It will provide a complete overview of the overall
health, detect performance degradation and component failures by
collecting, processing, storing and visualising data from hardware and
software sensors and probes. The core of the system is based on Apache
Kafka ensuring high throughput, fault-tolerant and metric aggregation,
processing with the help of Kafka Streams. In addition, Telegraf provides
operating system sensors, InfluxDB is used as a time-series database,
Grafana as a visualisation tool. The above tool selection evolved from the
initial version where collectD was used instead of Telegraf, and Apache
Flume together with Apache Spark instead of Apache Kafka.

1 Introduction

1.1 The ALICE Experiment

ALICE (A Large Ion Collider Experiment) [1] is a detector designed to study the physics of
strongly interacting matter (the Quark–Gluon Plasma), produced in heavy-ion collisions at
the CERN Large Hadron Collider (LHC). ALICE consists of a central barrel and a forward
muon spectrometer, allowing for a comprehensive study of hadrons, electrons, muons and
photons produced in the collisions of heavy ions. The ALICE collaboration also has an
ambitious physics program for proton–proton and proton–ion collisions. After the
successful Run 1 (2010-2013) and Run 2 (2015-2018) data taking periods, the LHC entered
into a consolidation phase (Long Shutdown 2) and ALICE started its upgrade to fully
exploit the increase in luminosity expected in Run 3. The upgrade foresees a complete
replacement of the computing systems (Data Acquisition, High-Level Trigger and Offline)
by a single, common O2 (Online-Offline) system.

*Corresponding author: adam.wegrzynek@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 01042 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501042

1.2 ALICE O2

The ALICE O2 computing system [2] will allow the recording of Pb–Pb collisions at a
50 kHz interaction rate. Some detectors will be read out continuously, without physics
triggers. Instead of rejecting events, the O2 system will compress the data by online
calibration and partial reconstruction. The first part of this process will be done in dedicated
FPGA cards that will receive the raw data from the detectors. The cards will perform
baseline correction, zero suppression and inject the data into the memory of the FLPs (First
Level Processors) to create a sub-timeframe. Then, the data will be distributed over EPNs
(Event Processing Node) for aggregation and additional processing. The O2 facility will
consist of 198 FLPs and 500 EPNs. Each FLP will be logically connected to each EPN
through high throughput links. The O2 farm will receive data from the detectors at 27 Tb/s,
which will be reduced to 720 Gb/s after processing.

2 Monitoring subsystem

The O2 monitoring subsystem provides a complete overview of the overall health, detects
performance degradation and component failures by collecting, processing, storing and
visualising values from hardware and software sensors and probes.
 As presented in Fig. 1, metrics are fed to the system from both monitoring library [3]
(via Telegraf) and Telegraf [4] itself. The monitoring library provides a convenient C++
interface to inject metrics from other O2 subsystems. The Telegraf agent monitors
the operating system, services and fetches the status of O2 specific hardware. All these
metrics, converted to the InfluxDB Line Protocol format [5], are pushed over Kafka [6]
protocol to the Kafka cluster. The selected metrics are aggregated over time and processed
using Kafka Streams [7]. Eventually, they all reach a consumer which outputs them to
InfluxDB [8] time-series database for permanent storage.

Fig. 1. Monitoring subsystem architecture and message flow

The metrics can be visualised in Grafana [9] which serves rich historical record dashboards.
Grafana also generates alarms which are fed back to the Kafka cluster where they are
translated into notifications.

2.1 Monitoring library

The monitoring library collects the metrics from other O2 subsystems, eg: Readout [10],
Quality Control [11] and DPL (Data Processing Layer) [12] framework. The library can
push the metrics into any stage of the monitoring chain: Telegraf, Kafka or InfluxDB. It can
also deliver a benchmark that can produce metrics at a given rate, or specially formatted
values in order to measure latency between creation and storage times.

2

EPJ Web of Conferences 245, 01042 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501042

2.2 Telegraf

Telegraf probes the operating system and hardware to provide its overall health. It replaces
the initially selected CollectD [13] due to the following limitations: protocol message
format not flexible enough, strings values not supported, partial IPMI support, fewer
plugins and difficulty with writing custom ones.
 Telegraf scrapes metrics from Kafka exposed by Jolokia bridge [14] and provides
cluster performance status, eg.: message rate or throughput per topic and partition (see
section 2.3). It was also extended with custom plugins to monitor the O2 PCI-e readout card
called CRUs (Common Readout Units) [15] and the CCDB (Condition and Calibration
Data Base) database. In addition, it receives metrics from C++ monitoring library instances
over Unix sockets and compacts them into 1-second batches. Then, it passes all the metrics
to a Kafka cluster through a built-in output plugin.

2.3 Kafka

Apache Kafka performs central metric aggregation and processing. It replaces the initially
used Apache Flume and Apache Spark [13], mostly due to limitations identified in Apache
Flume: manual cluster management (via configuration file), lack of scalability, lack of
fault-tolerance and small user base.
 Kafka uses several concepts and terms which are crucial to understand the following
subsections:

- Broker: single Kafka server that is part of the cluster;
- Producer: entity producing messages (metrics) and publishing them to the cluster;
- Consumer: entity consuming messages (metrics) from the cluster in order to pass them

to a non-Kafka endpoint or database;
- Topic: stream of messages that can be distributed over several partitions to provide

scalability;
- Partition: part of topic running on a given broker, it can also be replicated to ensure

fault tolerance (replication factor).

Fig. 2. Kafka cluster environment

As presented in Fig. 2, the Kafka cluster is composed of 3 brokers. Each topic is handled by
multiple partitions and is also replicated. The cluster is divided into two logical parts which
are isolated from each other: metrics and notifications.
 Incoming metrics, from Telegraf (and monitoring library), are passed to the Router that
redirects them either to one of the Processors or directly to the InfluxDB consumer.

3

EPJ Web of Conferences 245, 01042 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501042

 The notifications originate in Grafana as alarms (see section 2.3.5) and they are
injected to the cluster via REST Proxy [16] and then passed to one of the available
notification consumers.

2.3.1 Metric router

The metric router is responsible for routing the metrics around the cluster by forwarding
them to a desired topic. As InfluxDB Line Protocol allows a message to carry multiple
fields. The measurements that are meant for processing are split in order to contain only
one field per measurement.

2.3.2 Metric processor

A metric processor aggregates values over a configurable time window and applies one of
supported functions: average, sum, minimum, maximum. In addition, it provides non-
standard aggregation called “onoff”. The “onoff” was introduced to decrease the rate of
slowly changing binary values such as: state of the link (up/down), state of hardware
(on/off), etc. The “onoff” keeps the last received metric of a given name in the cache and
passes it to a consumer only if its value changes, otherwise the metric is immediately
dropped, except for a minimum heartbeat of 1 value per 15 minutes.

2.3.3 InfluxDB consumer

The InfluxDB consumer writes metrics from a specific topic to the database over UDP
(User Datagram Protocol). It uses multiple server-side ports in order to increase the writing
performance. It chooses a destination port using a round-robin system.
 The metrics could also be pushed to the database using Confluent InfluxDB Sink
Connector [17], but this was ruled out as the connector introduces additional latency and
does not provide optimal performance due to the usage of HTTP [13].

2.3.4 Alarms and notifications

The alarms are generated within Grafana by setting thresholds via the user interface.
Grafana passes the alarms through Kafka REST Proxy to the cluster. The second source of
alarms is Kafka itself, which may trigger alarms while processing values. The alarms are
translated into notifications and pushed to one of the dispatchers:

- Mattermost [18]: online chat service commonly used at CERN;
- Email: email message including also the concerned plot;
- Web Notification API [19]: via dedicated topic to O2 WebUI framework [20], and then

over WebSocket protocol to user web browser which triggers native browser
notifications.

2.3.5 Performance

To ensure that the Kafka cluster is capable of handling the desired amount of data a
performance test was performed to plot the latency as a function of the metric percentile for
different metric rates. The latency is defined as timestamp difference between the moment
in which the metric is produced and the one in which it is stored in the database.

4

EPJ Web of Conferences 245, 01042 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501042

Fig. 3. Latency, defined as the difference between the production and storage times, as a function of
the metric percentile for different metric rates

Figure 3 represents the scenario in which Kafka does not process any value and each
measurement contains only one field (in a real system most of the measurements will carry
multiple fields), which translates into a high storage metric rate. It is foreseen that the
processing will reduce the metric storage rate by factor of 2. During the test the percentage
of dropped messages between the InfluxDB consumer and the database never reached
0.1%. The test confirms that the performance of Kafka cluster is satisfactory. Additional
details are available in [21].

2.4 InfluxDB

The InfluxDB time-series database supports downsampling which decreases the value
resolution over time by bringing down the total database size. It is planned to keep the raw
metrics for 7 days. After this time the metrics will be downsampled to one value per
minute, which will decrease their volume by a factor of 5 and allow the storage of the
metrics until the end of the calendar year.

2.5 Grafana

Grafana serves as a data visualisation tool. Currently, it supports rich historical record
dashboards. After the Grafana 7 release, which enables backend data source plugins [22], it
is foreseen to add real-time data source delivering metrics directly from Kafka to Grafana.
This is necessary for providing robust dashboards for the shift crew in the ALICE Control
Room and decrease the database query rate. Figure 4 presents one of the available
dashboards that reports the status of a CRU readout card.

Fig. 4. Status of single CRU readout card: temperature, dropped packets and status of its 24 links

5

EPJ Web of Conferences 245, 01042 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501042

3 Outcome

The final system description and performance results presented above confirm that the
monitoring subsystem will provide a robust and intuitive overview of the O2 system status.
The monitoring subsystem is nearly complete. The next steps mostly concern creating
top-level, real-time dashboards and further integration with O2.

References
1. ALICE Collaboration, The ALICE experiment at the CERN LHC, JINST 3 S08002,

(2008)
2. ALICE Collaboration, Technical Design Report for the Upgrade of the Online–Offline

Computing System, CERN-LHCC-2015-006 (2015)
3. ALICE O2 monitoring library, https://github.com/AliceO2Group/Monitoring, accessed

2020-01-19
4. Telegraf, https://www.influxdata.com/time-series-platform/telegraf/, accessed 2020-

01-23
5. InfluxDB line protocol tutorial – InfluxData Documentation,

https://docs.influxdata.com/influxdb/v1.7/write_protocols/line_protocol_tutorial/,
accessed 2020-01-23

6. Apache Kafka, https://kafka.apache.org/, accessed 2020-01-22
7. Kafka Streams, https://kafka.apache.org/documentation/streams/, accessed 2020-01-22
8. InfluxDB – Downsampling and data retention,

https://docs.influxdata.com/influxdb/v1.6/guides/downsampling_and_retention/,
accessed 2020-01-23

9. Grafana - The open platform for analytics and monitoring, https://grafana.com,
accessed 2020-01-12

10. F. Costa, S. Chapeland, Readout software for the ALICE integrated Online-Offline
(O2) system, EPJ Web Conf. 214 03043 (2019)

11. B. von Haller, P. Lesiak, J. Otwinowski, Design of the data quality control system for
the ALICE O2, J. Phys. Conf. Ser. 898 032001 (2017)

12. G. Eulisse, P. Konopka, M. Krzewicki, M. Richter, D. Rohr, S. Wenzel, Evolution of
the ALICE Software Framework for LHC Run 3, EPJ Web Conf. 214 03043 (2019)

13. A. Wegrzynek, G. Vino, V.C. Barroso, D. Elia, C. Grigoras, A.G. Ramirez, Towards
the integrated ALICE Online-Offline (O2) monitoring subsystem, EPJ Web Conf. 214
03043 (2019)

14. Jolokia, https://jolokia.org/, accessed 2020-01-23
15. J. Mitra et al, Common Readout Unit (CRU) - A new readout architecture for the

ALICE experiment, JINST 11 C03021 (2016)
16. Kafka REST Proxy, https://docs.confluent.io/3.0.0/kafka-rest/docs/intro.html, accessed

2020-01-22
17. InfluxDB Sink Connector, https://docs.confluent.io/current/connect/kafka-connect-

influxdb/influx-db-sink-connector/index.html, accessed 2020-01-23
18. Mattermost, https://mattermost.com/, accessed 2020-01-22

6

EPJ Web of Conferences 245, 01042 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501042

19. Notifications – Web API, https://developer.mozilla.org/en-
US/docs/Web/API/notification/, accessed 2020-01-22

20. ALICE O2 Web UI Framework, https://github.com/AliceO2Group/WebUi/, accessed
2020-01-23

21. G. Vino, D. Elia, V.C. Barroso, A. Wegrzynek, A Monitoring System for the New
ALICE O2 Farm, ICALEPCS'19 (to be published)

22. Grafana’s Backend Plugin System,
https://grafana.com/docs/grafana/latest/plugins/developing/backend-plugins-guide,
accessed: 2020-01-23

7

EPJ Web of Conferences 245, 01042 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501042

