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Abstract. The ALICE Experiment was designed to study the physics of 
strongly interacting matter with heavy-ion collisions at the CERN LHC. A 
major upgrade of the detector and computing model (O2, Offline-Online) is 
currently ongoing. The ALICE O2 farm will consist of almost 1000 nodes 
enabled to read out and process on-the-fly about 27 Tb/s of raw data. To 
efficiently operate the experiment and the O2 facility a new monitoring 
system was developed. It will provide a complete overview of the overall 
health, detect performance degradation and component failures by 
collecting, processing, storing and visualising data from hardware and 
software sensors and probes. The core of the system is based on Apache 
Kafka ensuring high throughput, fault-tolerant and metric aggregation, 
processing with the help of Kafka Streams. In addition, Telegraf provides 
operating system sensors, InfluxDB is used as a time-series database, 
Grafana as a visualisation tool. The above tool selection evolved from the 
initial version where collectD was used instead of Telegraf, and Apache 
Flume together with Apache Spark instead of Apache Kafka.  

1 Introduction  

1.1 The ALICE Experiment 

ALICE (A Large Ion Collider Experiment) [1] is a detector designed to study the physics of 
strongly interacting matter (the Quark–Gluon Plasma), produced in heavy-ion collisions at 
the CERN Large Hadron Collider (LHC). ALICE consists of a central barrel and a forward 
muon spectrometer, allowing for a comprehensive study of hadrons, electrons, muons and 
photons produced in the collisions of heavy ions. The ALICE collaboration also has an 
ambitious physics program for proton–proton and proton–ion collisions. After the 
successful Run 1 (2010-2013) and Run 2 (2015-2018) data taking periods, the LHC entered 
into a consolidation phase (Long Shutdown 2) and ALICE started its upgrade to fully 
exploit the increase in luminosity expected in Run 3. The upgrade foresees a complete 
replacement of the computing systems (Data Acquisition, High-Level Trigger and Offline) 
by a single, common O2 (Online-Offline) system. 
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1.2 ALICE O2 

The ALICE O2 computing system [2] will allow the recording of Pb–Pb collisions at a 
50 kHz interaction rate. Some detectors will be read out continuously, without physics 
triggers. Instead of rejecting events, the O2 system will compress the data by online 
calibration and partial reconstruction. The first part of this process will be done in dedicated 
FPGA cards that will receive the raw data from the detectors. The cards will perform 
baseline correction, zero suppression and inject the data into the memory of the FLPs (First 
Level Processors) to create a sub-timeframe. Then, the data will be distributed over EPNs 
(Event Processing Node) for aggregation and additional processing. The O2 facility will 
consist of 198 FLPs and 500 EPNs. Each FLP will be logically connected to each EPN 
through high throughput links. The O2 farm will receive data from the detectors at 27 Tb/s, 
which will be reduced to 720 Gb/s after processing.  

2 Monitoring subsystem  

The O2 monitoring subsystem provides a complete overview of the overall health, detects 
performance degradation and component failures by collecting, processing, storing and 
visualising values from hardware and software sensors and probes.  
 As presented in Fig. 1, metrics are fed to the system from both monitoring library [3] 
(via Telegraf) and Telegraf [4] itself. The monitoring library provides a convenient C++ 
interface to inject metrics from other O2 subsystems. The Telegraf agent monitors 
the operating system, services and fetches the status of O2 specific hardware. All these 
metrics, converted to the InfluxDB Line Protocol format [5], are pushed over Kafka [6] 
protocol to the Kafka cluster. The selected metrics are aggregated over time and processed 
using Kafka Streams [7]. Eventually, they all reach a consumer which outputs them to 
InfluxDB [8] time-series database for permanent storage. 
 

 
Fig. 1. Monitoring subsystem architecture and message flow 
 
The metrics can be visualised in Grafana [9] which serves rich historical record dashboards. 
Grafana also generates alarms which are fed back to the Kafka cluster where they are 
translated into notifications. 
 
2.1 Monitoring library  
 
The monitoring library collects the metrics from other O2 subsystems, eg: Readout [10], 
Quality Control [11] and DPL (Data Processing Layer) [12] framework. The library can 
push the metrics into any stage of the monitoring chain: Telegraf, Kafka or InfluxDB. It can 
also deliver a benchmark that can produce metrics at a given rate, or specially formatted 
values in order to measure latency between creation and storage times.  
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2.2 Telegraf 

Telegraf probes the operating system and hardware to provide its overall health. It replaces 
the initially selected CollectD [13] due to the following limitations: protocol message 
format not flexible enough, strings values not supported, partial IPMI support, fewer 
plugins and difficulty with writing custom ones.  
 Telegraf scrapes metrics from Kafka exposed by Jolokia bridge [14] and provides 
cluster performance status, eg.: message rate or throughput per topic and partition (see 
section 2.3). It was also extended with custom plugins to monitor the O2 PCI-e readout card 
called CRUs (Common Readout Units) [15] and the CCDB (Condition and Calibration 
Data Base) database. In addition, it receives metrics from C++ monitoring library instances 
over Unix sockets and compacts them into 1-second batches. Then, it passes all the metrics 
to a Kafka cluster through a built-in output plugin. 

2.3 Kafka  

Apache Kafka performs central metric aggregation and processing. It replaces the initially 
used Apache Flume and Apache Spark [13], mostly due to limitations identified in Apache 
Flume: manual cluster management (via configuration file), lack of scalability, lack of 
fault-tolerance and small user base. 
 Kafka uses several concepts and terms which are crucial to understand the following 
subsections: 

- Broker: single Kafka server that is part of the cluster; 
- Producer: entity producing messages (metrics) and publishing them to the cluster; 
- Consumer: entity consuming messages (metrics) from the cluster in order to pass them 

to a non-Kafka endpoint or database; 
- Topic: stream of messages that can be distributed over several partitions to provide 

scalability; 
- Partition: part of topic running on a given broker, it can also be replicated to ensure 

fault tolerance (replication factor). 
 

 
Fig. 2. Kafka cluster environment 
 
As presented in Fig. 2, the Kafka cluster is composed of 3 brokers. Each topic is handled by 
multiple partitions and is also replicated. The cluster is divided into two logical parts which 
are isolated from each other: metrics and notifications. 
 Incoming metrics, from Telegraf (and monitoring library), are passed to the Router that 
redirects them either to one of the Processors or directly to the InfluxDB consumer. 
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 The notifications originate in Grafana as alarms (see section 2.3.5) and they are 
injected to the cluster via REST Proxy [16] and then passed to one of the available 
notification consumers. 

2.3.1 Metric router 

The metric router is responsible for routing the metrics around the cluster by forwarding 
them to a desired topic. As InfluxDB Line Protocol allows a message to carry multiple 
fields. The measurements that are meant for processing are split in order to contain only 
one field per measurement.  

2.3.2 Metric processor 

A metric processor aggregates values over a configurable time window and applies one of 
supported functions: average, sum, minimum, maximum. In addition, it provides non-
standard aggregation called “onoff”. The “onoff” was introduced to decrease the rate of 
slowly changing binary values such as: state of the link (up/down), state of hardware 
(on/off), etc. The “onoff” keeps the last received metric of a given name in the cache and 
passes it to a consumer only if its value changes, otherwise the metric is immediately 
dropped, except for a minimum heartbeat of 1 value per 15 minutes. 

2.3.3 InfluxDB consumer  

The InfluxDB consumer writes metrics from a specific topic to the database over UDP 
(User Datagram Protocol). It uses multiple server-side ports in order to increase the writing 
performance. It chooses a destination port using a round-robin system. 
 The metrics could also be pushed to the database using Confluent InfluxDB Sink 
Connector [17], but this was ruled out as the connector introduces additional latency and 
does not provide optimal performance due to the usage of HTTP [13]. 

2.3.4 Alarms and notifications 

The alarms are generated within Grafana by setting thresholds via the user interface. 
Grafana passes the alarms through Kafka REST Proxy to the cluster. The second source of 
alarms is Kafka itself, which may trigger alarms while processing values. The alarms are 
translated into notifications and pushed to one of the dispatchers: 

- Mattermost [18]: online chat service commonly used at CERN; 
- Email: email message including also the concerned plot; 
- Web Notification API [19]: via dedicated topic to O2 WebUI framework [20], and then 

over WebSocket protocol to user web browser which triggers native browser 
notifications. 

2.3.5 Performance 

To ensure that the Kafka cluster is capable of handling the desired amount of data a 
performance test was performed to plot the latency as a function of the metric percentile for 
different metric rates. The latency is defined as timestamp difference between the moment 
in which the metric is produced and the one in which it is stored in the database. 
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Fig. 3. Latency, defined as the difference between the production and storage times, as a function of 
the metric percentile for different metric rates 
 
Figure 3 represents the scenario in which Kafka does not process any value and each 
measurement contains only one field (in a real system most of the measurements will carry 
multiple fields), which translates into a high storage metric rate. It is foreseen that the 
processing will reduce the metric storage rate by factor of 2. During the test the percentage 
of dropped messages between the InfluxDB consumer and the database never reached 
0.1%. The test confirms that the performance of Kafka cluster is satisfactory. Additional 
details are available in [21]. 

2.4 InfluxDB 

The InfluxDB time-series database supports downsampling which decreases the value 
resolution over time by bringing down the total database size. It is planned to keep the raw 
metrics for 7 days. After this time the metrics will be downsampled to one value per 
minute, which will decrease their volume by a factor of 5 and allow the storage of the 
metrics until the end of the calendar year. 

2.5 Grafana 

Grafana serves as a data visualisation tool. Currently, it supports rich historical record 
dashboards. After the Grafana 7 release, which enables backend data source plugins [22], it 
is foreseen to add real-time data source delivering metrics directly from Kafka to Grafana. 
This is necessary for providing robust dashboards for the shift crew in the ALICE Control 
Room and decrease the database query rate. Figure 4 presents one of the available 
dashboards that reports the status of a CRU readout card. 
 

 
Fig. 4. Status of single CRU readout card: temperature, dropped packets and status of its 24 links 
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3 Outcome  

The final system description and performance results presented above confirm that the 
monitoring subsystem will provide a robust and intuitive overview of the O2 system status. 
The monitoring subsystem is nearly complete. The next steps mostly concern creating 
top-level, real-time dashboards and further integration with O2. 
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