
Exploiting CRIC to streamline the configuration manage-
ment of GlideinWMS factories for CMS support

Jeffrey Dost1,∗, Marco Mascheroni1,∗∗, Julia Andreeva2, Alexey Anisenkov3,4Dennis Box5,
Alessandro Di Girolamo2, Saqib Haleem6, Edita Kizinevič7, Krista Majewski5, James Letts1,
Lorena Lobato Pardavila5, Bruno Moreira Coimbra5, Antonio Pérez-Calero Yzquierdo8,9,
Marco Mambelli5, Panos Paparrigopoulos2, and Marian Zvada10

1University of California San Diego, La Jolla, CA, USA
2European Organization for Nuclear Research, Meyrin, Switzerland
3Novosibirsk State University, Novosibirsk, Russia
4Budker Institute of Nuclear Physics, Novosibirsk, Russia
5Fermi National Accelerator Laboratory, Batavia, IL, USA
6National Centre for Physics Rd, Islamabad, Pakistan
7Vilnius University, Vilnius, Lithuania
8Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, Madrid, Spain
9Port d’Informació Científica, Barcelona, Spain
10University of Nebraska-Lincoln, Lincoln, NE, USA

Abstract. GlideinWMS is a workload management and provisioning system
that allows sharing computing resources distributed over independent sites.
Based on the requests made by GlideinWMS frontends, a dynamically sized
pool of resources is created by GlideinWMS pilot factories via pilot job submis-
sion to resource sites’ CEs. More than 400 CEs are currently serving more than
ten virtual organizations through GlideinWMS, with CMS being the biggest
user with 230 CEs. The complex configurations of the parameters defining re-
source requests, as submitted to those CEs, have been historically managed by
manually editing a set of different XML files. New possibilities arise with CMS
adopting the CRIC, an information system that collects, aggregates, stores, and
exposes, among other things, computing resource data coming from various
data providers. The paper will describe the challenges faced when CMS started
to use CRIC to automatically generate the GlideinWMS factory configurations.
The architecture of the prototype, and the ancillary tools developed to ease this
transition, will be discussed. Finally, future plans and milestones will be out-
lined.

1 Introduction

The Compact Muon Solenoid (CMS) experiment is one of two multipurpose experiments that
collect and analyze data from proton-proton and heavy ion collisions at the Large Hadron
Collider (LHC), in Geneva, Switzerland. CMS, as well as other High Energy Physics (HEP)
experiments, uses Grid, Cloud, and high performance computing (HPC) centers to satisfy its
∗e-mail: jdost@ucsd.edu
∗∗e-mail: marco.mascheroni@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 03023 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503023



computing needs, while GlideinWMS [1] is the workflow management system used by CMS
to access these compute resources.

A user HTCondor [2] pool, that shrinks and grows based on user requests, is dynamically
created by sending pilot jobs [3] to many resources located all around the world. Pilot jobs
are responsible for validating the resources they are accessing, and then they join the user
HTCondor pool in order to run user jobs. As shown in figure 1, two components form the
GlideinWMS system: a frontend and a factory.

Figure 1. The components of the GlideinWMS system. In order to create a dynamic HTCondor pool, a
frontend and a factory work together determining the pressure from users’ jobs and sending pilot jobs to
Grid, Cloud, and HPC resources. Pilot jobs running on the worker nodes then start the condor daemons
that are necessary to join the central user pool, and finally start user jobs

The factory is responsible for sending the pilot jobs to the different resources. Resources
belonging to the same institute form a site. Compute Elements (CEs), the access points of
Grid and HPC resources, are a set of services that provide an interface for pilot jobs to access
a local resource management system, and also take care of authentication, authorization and
delegation of jobs. A site can have multiple CEs, which, in turn, can have multiple queues.
Queues give the site the ability to expose different machine types, and restrict access to ma-
chines of a given type for specific user communities. In the GlideinWMS factory, entries
represent the set of parameters required to properly configure the factory to submit and run
a pilot on a particular queue on a CE. The frontend looks at user and central production job
pressure, and then decides how many pilot jobs the factory should send to each entry, based
on the user’s job requirements and the current load on each entry. Pilot jobs will first execute
a set of tests to make sure the resources they are accessing are valid, checking for example
that all the software necessary to execute the user jobs is installed on the worker nodes, and
then they will connect to the HTCondor user pool in order to start executing user jobs. In
GlideinWMS, different experiments, which are called Virtual Organizations (VOs), run one
or more different frontends, which are in turn connected to one or more factories. Various
multi-experiment redundant factories are used for high availability.

Factory configurations are a set of XML files that contain all of the parameters for each
entry. Currently, there are more than 400 entries in those XML files which are manually
maintained and correspond to about 16000 lines of XML. In this paper we discuss a new
solution that CMS adopted in order to reduce the operational effort needed to maintain the
factory configurations. This solution exploits the CMS Computing Resource Information
Catalogue (CRIC) [4] to automatically generate a subset of the CMS factory configurations.

The rest of this paper is organized as follows. Section 2 explains more in detail how
factory operations works. Section 3 introduces CRIC, while Section 4 discusses how CRIC
has been used to build a prototype that can automatically generate factory configurations.
Section 5 gives more detail about how the prototype has been used. Sections 6 and 7 outline
future directions and draw some conclusions, respectively.

2

EPJ Web of Conferences 245, 03023 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503023



2 CMS Factory Operations

Factories are operated by a dedicated team of 2.5 full-time equivalent workers. The team is
responsible for ensuring that the GlideinWMS system is optimally delivering useful resources
to users when these are requested, while trying to minimize the waste of resources in doing
so.

One of the major time-consuming activities for the factory operations team is maintaining
all of the XML files containing the entries. Those configuration files have been populated over
several years with site resources. A site administrator who wants to connect their cluster to the
factory and start receiving jobs from CMS opens a ticket with all of the CE queue information.
Factory operators check if the information is complete and request clarifications if needed.
VO-specific information is also added to the entry, and factory operators may require input
from other CMS experts in order to set them. When the information is complete, the operators
add the entry to a test factory. Test pilots are then sent to the site to verify all the validation
scripts are executed correctly. If everything is correct, the entry can finally be added to the
production factories.

The entire process of configuring, testing, and validating a new factory entry or a change
to an existing entry is very time consuming and requires many interactions between the fac-
tory operations team and site administrators. It usually takes one week from the opening of
the ticket to the addition of the entry to the production factory. Since plenty of room for opti-
mization is available, the factory operations team started to evaluate possibilities to automate
parts of this process.

The entire factory configuration was analyzed, and we determined there are four different
categories of entry parameters:

1. Resource description parameters that are published in Grid-infrastructure owned in-
formation systems: CE hostname, CE type (ARC, CREAM, HTCondor, etc.), queue
name, resource name, supported VOs, etc.

2. Unpublished resource description parameters: working directory, maximum number of
jobs, operating system, etc.

3. Internal GlideinWMS parameters: Grid submission rates, entry names, etc.

4. VO configuration parameters: pilot CPU / memory configuration, etc.

Category 1 includes attributes needed in order to submit to a given CE queue at a site.
They can be found in various information systems (e.g. Open Science Grid (OSG) Topology
[5], EGI Grid Configuration Database (GOCDB) [6]), with each information system contain-
ing information about a specific set of attributes. A given site can have multiple CEs, each
accessible by a physical machine hostname. There are a few implementations of CE soft-
ware. In order to submit to a given CE, one must know the hostname, the implementation
type and the corresponding port, and various fields may need to be set to select a queue de-
pending on site configuration. As mentioned in Section 1, a particular CE can expose various
resource types described by queues. A queue may represent a subset of machines a VO is
allowed to run on, and enforce constraints on a VO pilot that lands on the machine, such as
maximum allowed memory, walltime, and number of CPUs. Depending on the CE imple-
mentation, the submission parameters might require only a logical queue name, or one may
need to configure the constraints directly.

Unfortunately, the parameters available on each information systems differ and some pa-
rameters are never published, so there are parameters that currently a site administrator must

3

EPJ Web of Conferences 245, 03023 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503023



communicate directly to factory operators to completely configure an entry. These parame-
ters fall under Category 2. Category 3 contains parameters that are internal to GlideinWMS,
which need to be set according to factory operations experience, for example in order to
regulate the pilot submission thresholds and rates by the factory for the specific resource rep-
resented in the entry. Finally, Category 4 parameters in an entry are used to configure the
pilot based on VO policy. For example, a targeted resource might have up to thirty-two core
machines, but CMS would prefer to configure eight core pilots to run at that site.

As discussed in Section 3, some of the information in these categories were already avail-
able in CRIC.

3 The Computing Resource Information Catalogue (CRIC)

In 2015 the OSG [7] announced plans to stop using BDII [8] to publish their computing re-
sources. This triggered a review of information systems in Worldwide LHC Computing Grid
(WLCG). As part of a trend in CMS (and HEP at large) to leverage community software
projects, CMS began to evaluate the adoption of CRIC in 2016 as its information service.
CRIC is a community project based on a refactorization of AGIS [9], the ATLAS Grid Infor-
mation System.

CRIC gathers and allows access to information about physical and logical computing
resources in CMS. CRIC is made up of two components, CRIC Core, and CRIC CMS.
CRIC Core provides descriptions of resources (Category 1) and gathering information from
GOCDB for EGI sites, and OSG Topology for OSG sites, respectively. CRIC CMS contains
experiment-specific information on how CMS organizes these resources (Category 4). For
example, CRIC CMS contains the list of CMS sites available on the Grid. APIs are available
to retrieve this information from both CRIC Core and CRIC CMS in JSON format. In 2018, it
was decided to create interfaces for factory operators in order to leverage CRIC and automate
the factory configuration generation.

There are multiple advantages in this approach. CRIC represents a central and public
place where all the site configurations are available via the web for everybody. The factory
operations workflow can be streamlined, since less back and forth with site administrators
is required to update and validate information, which in turn reduces the workload on the
factory operations team. Web forms are easier to fill in than big XML files; therefore, a
site administrator might be able to insert information directly into CRIC instead of factory
operators doing it on their behalf. CRIC can also be used as a starting point for implementing
more automated tools, such as a method to automatically send test jobs once an entry is
created in CRIC.

4 Architecture

4.1 CRIC CMS User Interface

While CRIC Core provides a mostly complete list of all available CEs and queues per CE
for a site, currently it does not provide all the details necessary to completely configure a
GlideinWMS entry. In order to remedy this, the CRIC CMS component was used to bridge
the missing information. In the initial integration of GlideinWMS factories with CRIC, i.e.
using factories as a data source, the CMS API contains the rest of the fields necessary to
complete a factory entry. CMS uses this information for other functions outside the scope
of this paper, such as the SiteDB [10]. In order to invert the logic so that factory entries can
be generated from CRIC and at the same time not disrupt consumers of CRIC data when the
factories are removed as a data source, the CRIC developers worked with factory operations to

4

EPJ Web of Conferences 245, 03023 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503023



create a web-based site administrator User Interface (UI). This UI allows a site administrator
or a factory operator to directly configure any fields required beyond what is already exposed
in the CRIC Core API in order to complete the missing data needed to generate an entry
(Categories 2-4). The site administrator UI then acts as the new input for the CMS API,
which ultimately replaces the factory itself as a CRIC data source.

4.2 Auto Entry Generation

Two Python scripts have been deployed to run on the factory to maintain submit point entries.
The first script periodically parses the data from the CRIC JSON files and keeps an up-to-date
local copy of the data on disk. The second script is responsible for merging the CRIC data
with operator-provided user data, which gives the operator the ability to whitelist the desired
entries to be propagated to the final factory configuration, as well as the opportunity to define
new attributes, or override any attribute associated with the entry that was already retrieved
from CRIC.

YAML was chosen as the file format for the intermediate files stored on disk. The reason
for this is it needs to be a human-friendly readable format since operators need to look at the
auto-generated files and make decisions about what to override. Factory operations experi-
ence has proven working with XML files to be cumbersome as a configuration file format
that humans read and modify.

The ability to whitelist entries and manually add or override attributes are important be-
cause the factory operations team usually will perform an audit of the entry configuration
and need a quick turnaround in case the generated entry is incorrect. In fact, auto-generated
entries might contain errors because the data contained in Grid information not being al-
ways accurate, and fixing the errors might require long iterations with the responsible of the
resource. Moreover, as discussed in Section 2, information systems typically only contain
resource attributes from Category 1, but frequently operators must fill in custom fields to
properly configure the pilot for a special resource.

5 Proof of Concept

The eight CMS Tier 2 sites in the US (UCSD, Purdue, Caltech, Florida, MIT, Nebraska, Wis-
consin, and Vanderbilt) were selected as candidates to test the auto-generation of entries from
CRIC data. YAML whitelist files were manually edited, and the new scripts were used to au-
tomatically generate the factory XML configuration in a production environment. These sites
were ideal because they are representative of most of the entries in the factory configuration.
Figure 2 illustrates the immediate gains due to integrating the improved setup. Before having
the ability to auto-generate the entries, most of the configuration that would have been put
in place by hand would have contained lots of repetitive template code that is prone to error.
This boiler plate code is now pulled from the default YAML file instead. Resource-specific
fields are almost completely taken from a combination of CRIC Core and site administrator
UI. The manual override YAML file that the factory operator must maintain is reduced to
simply whitelisting the entry, and overriding a handful of fields as needed. Besides the great
simplification of the configuration file, there is a reduction in the number of interactions be-
tween site administrator and factory operator, since the site administrator has direct control
of the fields describing their site by virtue of the CRIC UI, and consequently a reduction in
time needed to deploy an entry.

While running the auto-generation in a production environment has proven successful,
there is still some room for improvement in the current implementation. The first issue is

5

EPJ Web of Conferences 245, 03023 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503023



Figure 2. Old manual XML entry compared to the new YAML override entry. The reduction in the
number of lines to maintain is clearly visible since most of the XML parameters are now in CRIC or
the default YAML file

that the site administrator UI is still predominantly designed from the perspective of factory
operations team. For example, the list of accepted VO has specific naming schemes that are
case-sensitive and are internal to factory operations. A site administrator would not know to
put "CMS instead of "cms", "OSGVO" instead of "osg", and so on. Similar conventions exist
for Operating System (OS) flavor. For example, knowing to spell out "RHEL7" instead of
"sl7", and worse, knowing to use the special key word "any" if the site supports containers.
Finally, a site administrator would have to know that factory operations uses specific units
for numeric fields, like seconds for maximum walltime, or megabytes for maximum memory.
These are only a few examples of why configuring a factory entry is not very user-friendly
for a site administrator.

Another limitation of the current implementation is that initially the factory operations
team focused only on the auto-generation of CMS entries. However, the scope of factory op-
erations is beyond CMS and WLCG. For example, there are some exotic configurations spe-
cific to non-CMS VOs that do not need to be considered in the CMS CRIC case and would
only over-complicate the implementation. The longer term solution for auto-generation of
entries for factory operations as a whole should work for all sites. CRIC gives factory oper-
ations the extra help in auto-generating CMS and WLCG entries, but other tools will need
to be developed to interface other external information systems and databases to handle the
non-WLCG, non-CMS sites that the factory also supports.

6 Future Plans

In order to address the issues discussed in Section 5, we have begun developing a new im-
plementation focusing on OSG CEs that are not in CRIC. The OSG CE Collector is the OSG
replacement of BDII. It is a simple HTCondor collector that contains descriptions of all of
the CEs in the OSG. Coincidentally, it is one of the data sources CRIC Core consumes for

6

EPJ Web of Conferences 245, 03023 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503023



WLCG sites in the OSG. The idea behind the new implementation is to use CRIC for all sites
where it is appropriate, then for non-WLCG OSG sites, directly parse the OSG CE Collector
for the data required to configure the entries. One downside is for these sites, site administra-
tors do not get the nice CRIC UI. However for OSG it is not an issue because administrators
are used to using the OSG Configure tools to propagate the resource descriptions into the
OSG CE Collector. Learning how OSG Configure works has also given the factory opera-
tions team a better understanding what a site administrator-centric interface looks like. So
the operations team can take this and work with the CRIC developers to decouple the factory
specific peculiarities of the current entry creation interface, and improve the user experience
for site administrators.

7 Conclusions

The CMS GlideinWMS factory is an important piece of the computing infrastructure of CMS.
It has been historically operated by managing a set of XML files which contains more than
400 entries, corresponding to about 16000 lines of XML. In order to reduce the effort needed
to maintain the factory, the factory and the CRIC teams worked together on a new solution
that allows CMS factory operators to leverage the CRIC interface to insert and manage en-
tries.

The solution has been validated in a production environment, and the factory operations
team is now evaluating how to address a wider variety of use cases in addition to CMS VO
and WLCG Sites.

This work was partially supported by the U.S. Department of Energy, the National Science Foundation,
and by Spain’s Ministry of Economy and Competitiveness grant FPA2016-80994. CMS thanks our
partners in the GlideinWMS, HTCondor, and CRIC development teams, the OSG, and our colleagues
at CERN, all of whom make the shared computing infrastructure a success.

References

[1] P. Mhashilkar, M. Mambelli, I. Sfiligoi, B. Holzman, K. Majewski, J.M. Dost, D. Box,
M. Mascheroni, J. Weigand, L. Lobato et al., glideinwms/glideinwms: v3.4 (2018),
https://doi.org/10.5281/zenodo.1309679

[2] HTCondor public web site, https://research.cs.wisc.edu/htcondor/
[3] I. Sfiligoi, D.C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, F. Wurthwein, The Pi-

lot Way to Grid Resources Using glideinWMS, in Proceedings of the 2009 WRI World
Congress on Computer Science and Information Engineering - Volume 02 (IEEE Com-
puter Society, Washington, DC, USA, 2009), CSIE ’09, pp. 428–432, ISBN 978-0-
7695-3507-4, http://dx.doi.org/10.1109/CSIE.2009.950

[4] A. Anisenkov, J. Andreeva, A. Di Girolamo, P. Paparrigopoulos, A. Vedaee, EPJ Web
Conf. 214, 03003 (2019)

[5] OSG Topology web site, https://topology.opensciencegrid.org/
[6] GOCDB web site, https://goc.egi.eu/
[7] OSG public web site, https://opensciencegrid.org/
[8] A. Osman, A. Anjum, N. Batool, R. McClatchey, A Fault Tolerant, Dynamic and Low

Latency BDII Architecture for Grids (2012), Vol. abs/1202.5512, 1202.5512, http:
//arxiv.org/abs/1202.5512

7

EPJ Web of Conferences 245, 03023 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503023

https://doi.org/10.5281/zenodo.1309679
https://research.cs.wisc.edu/htcondor/
http://dx.doi.org/10.1109/CSIE.2009.950
https://topology.opensciencegrid.org/
https://goc.egi.eu/
https://opensciencegrid.org/
http://arxiv.org/abs/1202.5512
http://arxiv.org/abs/1202.5512


[9] A. Anisenkov, A. Di Girolamo, M. Alandes Pradillo, Journal of Physics: Conference
Series 898, 092023 (2017)

[10] S. Metson, D. Bonacorsi, M. Dias Ferreira, R. Egeland, Journal of Physics: Conference
Series 219, 072044 (2010)

8

EPJ Web of Conferences 245, 03023 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503023


	Introduction
	CMS Factory Operations
	The Computing Resource Information Catalogue (CRIC)
	Architecture
	CRIC CMS User Interface
	Auto Entry Generation

	Proof of Concept
	Future Plans
	Conclusions

