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Abstract.
Software defect prediction is an activity that aims at narrowing down the most
likely defect-prone software modules and helping developers and testers to pri-
oritize inspection and testing. This activity can be addressed by using Machine
Learning techniques applied to software metrics datasets that are usually un-
labelled, i.e. they lack modules classification in terms of defectiveness. To
overcome this limitation, in addition to the usual data pre-processing operations
to manage mission values and/or to remove inconsistencies, researches have to
adopt an approach to label their unlabelled software datasets. The extraction of
defectiveness data to label all the instances of the datasets is an extremely time
and effort consuming operation. In literature, many studies have introduced
approaches to build a defect prediction models on unlabelled datasets.
In this paper, we describe the analysis of new unlabelled datasets from WLCG
software, coming from HEP-related experiments and middleware, by using Ma-
chine Learning techniques. We have experimented new approaches to label the
various modules due to the heterogeneity of software metrics distribution. We
discuss a number of lessons learned from conducting these activities, what has
worked, what has not and how our research can be improved.

1 Background

Machine learning (ML) as a means to help in different Software Engineering (SE) tasks, such
as software defects prediction and test code generation, has been often considered in research
studies in the last decades [1–5]. ML techniques are fed with input software data properly
processed and collected in datasets that are composed of instances, i.e. software modules
(such as files, classe and functions), and features, i.e. software metrics [6]. For the software
defect prediction, the actual defect information of instances is also mandatory in supervised
ML techniques; nevertheless, it may be not enough in the software archives of new or recent
software projects, or it can not have been traced properly in already existing software projects
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[7]. This constitutes a serious limitation in the utilization of supervised-based ML techniques
[8].

To address the limitation of supervised-based learning techniques in constructing defect
prediction models by using unlabelled datasets, researches have proposed various approaches
which can be categorized in five groups.

1. The within-project defect prediction (WPDP) is a typical prediction process built for
a specific project and is based on supervised ML. This approach is characterized by
a high precision, however, its prediction model can hardly be used for other projects’
prediction being built on a single software project [9].

2. The cross-project defect prediction (CPDP) builds a prediction model using a labelled
datasets. Then, it uses the same model to predict if an instance of another software
project is defective or not. This approach might be useful in case of new projects or
projects with limited defect information, however, it assumes that the two datasets have
the same set of metrics and that they have the same probability distribution [10].

3. The expert-based defect prediction first employs a clustering algorithm, like K-means,
to cluster the unlabelled instances, then it relies on a human expert for labelling each
cluster as defective or not [11]. The major limitation of this approach is that it requires
human experts to categorize cluster as defective.

4. The threshold-based defect prediction approach predicts an instance as buggy when
any metric value is greater than the given metric’s threshold. This approach can be au-
tomatized, however, defectiveness prediction is dependent on metrics thresholds which
must be established in advance [12].

5. The Clustering, LAbelling, Metric selection, Instance selection (CLAMI) approach is
based on a four-step procedure to be applied to the instances of an unlabelled dataset.
It is an automatizable approach, which does not involve human effort and relies on
metrics’ values which may not always be comparable and may introduce bias. CLAMI
is dependent on metric thresholds [13]. CLAMI+ is an evolution of the CLAMI ap-
proach: it employs a different procedure in the metrics’ selection phase. CLAMI+ is
still dependent on thresholds, but it normalizes metrics’ values [14].

The extraction of the complete set of features (metrics and labels) is time and effort con-
suming: moreover, the selection of the right tool for metrics’ extraction can be difficult to
conduct. For these reasons, unlabelled datasets are the vast majority of software datasets. To
perform defect prediction with unlabelled datasets it is necessary to find an automatizable
way to label instances.

2 Experimental Setup

The Worldwide LHC Computing Grid (WLCG) [15] employs a wide variety of software
whose vast majority has been using devops procedures in their development and maintenance
phases. The adopted tools collect software metrics, e.g. cyclomatic complexity or lines of
code [16, 17], over the releases, that can be used to build software datasets. In our study, we
have found that software projects have documentation related to code changes, like release
notes, which can be exploited to provide an assessment of the defectiveness prediction in
software.
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Our work aims at testing the usefulness of ML techniques in WLCG domain in terms of
the identification of the pieces of code, which require particular attention during the devel-
opment and maintenance phases of sofware. ML techniques can help in selecting software
modules that should be examined with greater care by developers. To achieve this goal, we
have constructed a defect prediction model by exploiting the unlabelled software datasets of
Geant4 that is one of the most rigorously validated software packages for the simulation of
the passage of particles through matter [18]. Amongst the different ML methodologies, we
have selected CLAMI [13] and CLAMI+ [14] in order to label the instances in the software
datasets. In addition, we have applied a large set of ML techniques to predict defect-prone
modules.

Our approach (summarized in Figure 1) uses as input a subset of the Geant4 software
dataset composed of 482 modules with 66 software metrics and 34 releases. This dataset has
been obtained by applying a tool for the static analysis - Imagix 4D tool [19] - to the various
modules of several software releases [20]. Imagix 4D tool’s output has been preprocessed in
order to keep only the common software modules and software metrics among the Geant4
software versions. This preprocessing activity has produced a 34 multiversions dataset each
composed of 482 software modules and 66 software metrics. The used 34 releases begin with
Geant4 0.0.4 to Geant 10.0.4.

Figure 1. Workflow

The input unlabelled dataset is turned into labelled dataset in 4 steps, 3 out of 4 are based
on the CLAMI approach. In the first step we have split the unlabelled dataset into a training
and a test dataset. The training dataset is composed of the 67% of the total instances, the
remaining instances have been included in the test dataset. With the aim of labelling the
training dataset, we have applied the CLAMI approach.

We have used an unsupervised algorithm to cluster instances by relying on the magnitude
of their metrics. More in detail, in the clustering phase, we have identified, for each instance,
the metrics that are greater than a specific cutoff threshold (e.g. the median value) and then
determined the number of metrics K, whose values have exceeded the threshold. Afterwards,
the instance have been clustered according to their K values. By relying on previous literature,
it is known that instances with larger values on their metrics are more likely defective [21–
23]. Therefore, we have discriminated the top half cluster as defective code and the bottom
half as non defective code.

The metrics selection phase considers the exclusion of the metrics that violate the defect
proneness tendency [24]. The violation occurs, for example, when in a defective-labelled
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instance, a metric does not exceed its cutoff threshold, or, on the contrary, when, in a non
defective-labelled instance, a metric exceeds its cutoff threshold. For each metric, we have
computed the metric violation score (MVS) that is the ratio between the number of violations
and the number of metric’s values. The metrics with lower MVS are selected for the training
dataset. The last CLAMI phase considers to remove all the instances with any violated metric
values. If this operation produces a training dataset without either defective or non defective
instances, then another MVS value is to be chosen and the last step need to be reiterate. The
CLAMI+ approach differs from CLAMI in the Clustering and Labelling steps ( 2a and 2b
in Figure 1 ). More in detail, CLAMI+ transforms the Boolean representation in CLAMI of
metrics’ violation into a probabilistic value based on the difference between the metric value
and the threshold. Consequently, CLAMI+ considers how much an instance violated on a
metric and leads to a different selection of the final training set that is expected to be more
informative than that built by CLAMI [14].

Once obtained the labelled dataset, we have applied various ML techniques, previously
selected among those that have already been used in the Software Engineering field, and,
more in detail, in the software defect prediction problem, as presented in previous literature
[25]: AdaBoost (AB) [26], Boosted Logistic Regression (BLR) [21, 27], J48 [28], Cost-
Sensitive C5.0 (C5.0 Cost) [29], Logistic Model Tree (LMT) [30], Multilayer Perceptron
(MLP) [31], Support Vector Machines with Radial Basis Function Kernel (SVM Radial)
[32], Partial Least Squares (PLS) [33], Boosted Tree (BT) [34] and Random Forest (RF)
[35]. In order to compare the different ML techniques, we have employed the most common
performance indicators detailed in literature. For a question of space, the indicators that we
have shown in section 3 are:

• Accuracy that measures the percentage of instances correctly classified as either defective
or non defective;

• Kappa statistics [36], whose value ranges from 0 to 1, that determines how much better
a classifier is performing over the performance of a classifier that simply guesses at ran-
dom. When Kappa’s value is between 0.81 to 0.99, this value indicates an almost perfect
agreement.

• Area Under the ROC (Receiver Operating Characteristic) Curve (AUC) [37] that is able to
consider the ability of a classifier to differentiate between the two classes. AUC has lower
variance and is more reliable than other performance metrics for software defect prediction
[38].

The assessment of our predictions has been conducted by comparing our results against
the software documentation like release notes.

3 Lessons Learned

In this section, we will discuss the key lessons that we have learned from our experience and
also propose activities for future research. It is worth highlighting that our approach uses
as input a subset of the Geant4 software dataset that is composed of 482 modules with 66
software metrics and 34 releases.

In the labeling phase, we have determined the defect-prone modules for each release
and different quantiles according to CLAMI and CLAMI+ approaches. Lower cutoff values
identify less defect prone software modules and, on the other hand, modules with larger
values in all metrics are more likely defective [22]. This study considers just a subset of
modules available for each release, therefore even though the labeled modules as defectives
have found a correspondence in the Geant4 documentation, we believe the current results
may envelope a bias for which we have a further investigation.
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In the metrics selection phase, we have removed from 33% to 55% of the total number
of metrics because our choice was to keep the metrics that were in common to the various
releases and quantiles (i.e. cut-off values choose for the metrics). Therefore, the average
number of the selected metrics is 38 out of 66 and, more in detail, this resulting set was
composed of metrics belonging to the size, complexity, maintainability and object orientation
categories.

For the defect prediction, we have applied various classification and regression techniques
on training datasets with 10-fold cross validation and assessed them on test datasets. We have
noticed that Kappa static value inferior to 0.81 corresponded to values of Accuracy inferior
to 90%. We have excluded all the prediction models whose Kappa statistic scored less than
0.81 in order to consider a good agreement between the observed and the expected accuracy.
Table 1 and Table 2 show which ML techniques perform best, in terms of accuracy and AUC,
by using either the CLAMI approach or the CLAMI+ approach, over the various quantiles.
Quantiles’ numbers from 1 to 9 correspond to 10%, ..., 90% cutoff values respectively.

Table 1. Average Accuracy of the ML Techniques

Quantile Approach J48 LMT AdaBoost Bagging
1 CLAMI 98.1670 98.1072 98.1381 97.3868
1 CLAMI+ 98.8291 98.8101 98.8471 98.5651
2 CLAMI 96.8106 97.1064 96.6285 96.9970
2 CLAMI+ 96.9223 96.6182 97.0572 96.3726
3 CLAMI 95.3838 95.1111 95.0132 94.9443
3 CLAMI+ 94.6002 94.5518 94.6830 94.5434
4 CLAMI 93.0748 93.2507 93.3463 93.1027
4 CLAMI+ 92.7295 92.3045 92.5200 92.7422
5 CLAMI 92.4850 92.4551 91.8897 92.5070
5 CLAMI+ 93.2537 93.9593 93.7013 93.6975
6 CLAMI 93.2719 93.5851 93.6380 93.4789
6 CLAMI+ 93.7195 93.9813 94.4491 94.0966
7 CLAMI 93.8482 94.4191 94.2796 94.2807
7 CLAMI+ 94.9153 95.1850 95.5844 94.9700
8 CLAMI 94.2239 95.5005 95.0125 94.7273
8 CLAMI+ 96.6170 96.7744 96.9310 96.2294
9 CLAMI 94.7243 95.0025 95.4197 94.9242
9 CLAMI+ 98.7572 99.3769 99.1762 98.8717

Table 2. Average defect-prone AUC of the ML Techniques

Quantile Approach J48 LMT AdaBoost Bagging
1 CLAMI 0.9321 0.9820 0.9895 0.9453
1 CLAMI+ 0.9117 0.9792 0.9864 0.9757
2 CLAMI 0.9146 0.9729 0.9823 0.9779
2 CLAMI+ 0.9297 0.9671 0.9855 0.9668
3 CLAMI 0.9347 0.9678 0.9822 0.9766
3 CLAMI+ 0.9254 0.9660 0.9781 0.9737
4 CLAMI 0.9300 0.9682 0.9786 0.9732
4 CLAMI+ 0.9291 0.9595 0.9733 0.9740
5 CLAMI 0.9253 0.9639 0.9706 0.9734
5 CLAMI+ 0.9385 0.9780 0.9831 0.9804
6 CLAMI 0.9404 0.9789 0.9841 0.9816
6 CLAMI+ 0.9295 0.9815 0.9854 0.9821
7 CLAMI 0.9355 0.9800 0.9837 0.9786
7 CLAMI+ 0.9246 0.9851 0.9892 0.9836
8 CLAMI 0.9275 0.9868 0.9856 0.9777
8 CLAMI+ 0.9144 0.9875 0.9886 0.9778
9 CLAMI 0.9136 0.9791 0.9854 0.9710
9 CLAMI+ 0.8868 0.9983 0.9826 0.9314

With regard to internal validity, each Geant4 release contains release note that includes
information about new development, change, bug fixes, performance improvement and so on.
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According to this documentation the modules traced for changes and included in the small
dataset have also been labelled as defect-prone during the labelling phase. We think that those
modules may contain false positives and true negatives, and thus future work would involve
investigating those defect-prone modules and confirming their validity. Geant4 is on board by
many years: it is important to understand what is an improvement and a bug fix. Furthermore,
the studied dataset may not be representative of all Geant4, and further investigation is need
to confirm our findings.

In terms of external validity, we have considered 34 Geant4 versions, which differ in size,
complexity, popularity and revision history. Our small dataset may not take the place of all
kinds of WLCG software, and we have to extend our study to other types of source code,
such as ROOT.

4 Conclusion

We have reported our experience which includes the labelling of a Geant4 multi-release un-
labelled software dataset and the application of several Machine Learning techniques. The
supervised machine learning algorithms explored take as input a representation for source
code in terms of code metrics, and predict if a module is defective-prone or not. We have
selected the machine learning techniques that scored more than 0.80 in the Kappa statistic
performance metric: J48, Adaboost, LMT and Bagging. We have discovered that our find-
ings on defect prone modules have a correspondence in the analysis of the software code
documentation (e.g. release notes).

This research is at an early stage of effort. The lessons we have learned will lead to dif-
ferent improvements in order to make it more accesibile to readers in terms of explainability,
scalability and usefulness.

We plan to extend our approach to the whole Geant4 datasets and apply this approachto
other types of WLCG software. In addition, we would like to explore how our approach can
be extended to assessing different types of defects such as bug fix, performance improvement
and so on.
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