
Abstracting container technologies and transfer mecha-
nisms in the Scalable CyberInfrastructure for Artificial
Intelligence and Likelihood Free Inference (SCAILFIN)
project

Kenyi Hurtado Anampa1,∗, Cody Kankel1,∗∗, Mike Hildreth1,∗∗∗, Paul Brenner1,∗∗∗∗, Irena
Johnson1,†, Scott Hampton1,‡, and Tibor Simko2,§

1University of Notre Dame, Notre Dame, IN, USA
2CERN, Geneva, Switzerland

Abstract. High Performance Computing (HPC) facilities provide vast compu-
tational power and storage, but generally work on fixed environments designed
to address the most common software needs locally, making it challenging for
users to bring their own software. To overcome this issue, most HPC facilities
have added support for HPC friendly container technologies such as Shifter,
Singularity, or Charliecloud. These different container technologies are all com-
patible with the more popular Docker containers, however the implementation
and use of said containers is different for each HPC friendly container tech-
nology. These usage differences can make it difficult for an end user to eas-
ily submit and utilize different HPC sites without making adjustments to their
workflows and software. This issue is exacerbated when attempting to utilize
workflow management software between different sites with differing container
technologies.
The SCAILFIN project aims to develop and deploy artificial intelligence (AI)
and likelihood-free inference (LFI) techniques and software using scalable
cyberinfrastructure (CI) that span multiple sites. The project has extended
the CERN-based REANA framework, a platform designed to enable analysis
reusability, and reproducibility while supporting different workflow engine lan-
guages, in order to support submission to different HPC facilities. The work
presented here focuses on the development of an abstraction layer that allows
the support of different container technologies and different transfer protocols
for files and directories between the HPC facility and the REANA cluster edge
service from the user’s workflow application.

∗e-mail: khurtado@nd.edu
∗∗e-mail: ckankel@nd.edu
∗∗∗e-mail: mhildret@nd.edu
∗∗∗∗e-mail: pbrenne1@nd.edu
†e-mail: ijohnso1@nd.edu
‡e-mail: shampton@nd.edu
§e-mail: tibor.simko@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 07023 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507023



1 Introduction

The REANA framework [1], used by the SCAILFIN project [2] to create analysis work-
flows that are easily reproducible, works on top of Kubernetes in order to orchestrate all
service components and the scheduling of workers to run the payloads. This assumes support
of docker and a shared file system between services and workers (see Figure 1). While the
REANA team is working on supporting different submission backends in the framework (HT-
Condor [3] and SLURM [4] at present), these are currently focused on working with CERN
resources [5]. The SCAILFIN project on the other hand, focuses on integrating REANA with
different HPC environments.

In order to do this in SCAILFIN, we have created a submission backend integrated with
VC3 [6], leveraging the authentication to the HPC submit nodes and proper translation of
jobs from HTCondor to the different HPC supported batch systems, as seen in Figure 2.

A description of the mechanisms used to support different HPC container technologies
and handle the transfer of files between the workers and the REANA cluster edge service by
creating a user-level distributed file system will be presented here.

Figure 1. REANA cluster deployment via Kubernetes

2 Detecting and supporting different container technologies

Users can interact with the REANA cluster through a python-based client package. This
client allows the user to create workflows, upload files to the workflow area and define the
docker container images needed to run each step in the workflow (see Figure 3).

Docker support is normally not provided by HPC centers, mostly due to the root daemon
privilege mode in docker, which imposes a security risk on multi-user facilities such as these.
Instead, HPC friendly container technology solutions are frequently provided, such as Singu-
larity [7], Shifter [8] or Charlie Cloud [9], which are compatible with docker images, but run
the containers in unprivileged mode.

In order to support different container technologies, the job controller submission back-
end constructs the job submission object and passes the docker image as a job argument(see
Figure 4). Subsequently, a job wrapper running in the worker node detects the container tech-
nology available (Singularity and Shifter are supported at present) and launches the container
image with the proper parameters, as shown in Figure 5.

2

EPJ Web of Conferences 245, 07023 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507023



Figure 2. REANA cluster deployment via VC3

Figure 3. Schematic showing the REANA client creating a new workflow, uploading the necessary
input files to a shared file system and running the payload inside docker containers.

This allows workflows to run on multiple HPC facilities supporting container technolo-
gies, without involving the user in providing the specific parameters per container technology
for launching the container images.

3 Data transfer management

Input files uploaded by the users through the client are stored in a file system at the edge
service by the server. This file system is shared between the REANA service components
and the workers when Kubernetes is also used as the scheduler for jobs. With HPC facilities,
jobs are submitted using their batch systems instead. Even though the REANA server can
upload files to this file system area, HPC workers do not have access to them in this case.

3

EPJ Web of Conferences 245, 07023 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507023



Figure 4. Job submit object creation and definition of arguments: workflow space absolute path, docker
images and the commands to be executed

Figure 5. Detection of container technology available in the HPC worker and definition of parameters
for it

To address this issue, SCAILFIN uses chirp [10], a user-level file system for collaboration
across distributed systems such as clusters, clouds and grids without any special privileges.
Chirp is integrated with HTCondor; a chirp server is automatically launched when the classad
+WantIOProxy=True is added to job submit object. This server can then be used to share
files between the VC3-headnode and the workers. This mechanism also takes care of the
authentication using cookies created by HTCondor itself when this option is enabled.

In order to access this file system from the worker nodes, parrot [11] is installed using the
vc3-builder [12] on the machine. Parrot is used to interact with the chirp server created by
HTCondor; while HTCondor has its own client, parrot allows recursive access of directories
on the fly, as opposed to the HTCondor chirp client.

As shown in Figure 6, parrot transfers all input files and directories for the job inside the
job scratch area. The directory is bound inside the container, using the same absolute path

4

EPJ Web of Conferences 245, 07023 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507023



kubernetes workers would normally see these files at in the shared file system, in order to
guarantee compatibility between both submission backends.

Finally, Figure 7 summarizes the main differences compared to the original infrastructure
in Figure 3, using the chirp server for the workers to connect to the file system the REANA
server writes to, as well as detecting and using Singularity or Shifter accordingly, to provide
the proper environment for the job.

Figure 6. File management via Chirp and Parrot

Figure 7. Schematic showing the REANA client creating and running new workflow, after integrating
the detection and usage of HPC friendly container technologies and connecting the edge service file
system used by REANA server via chirp and parrot

4 Conclusions
The SCAILFIN project has implemented mechanisms to automatically detect container tech-
nologies supported by HPC centers on the fly and use them in such a way that no modifi-
cations in the workflow definitions are necessary. Files are also shared between the HPC

5

EPJ Web of Conferences 245, 07023 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507023



facility workers and the REANA cluster edge service in a seamless way by using a user-level
file system integrated with HTCondor, which can be used independently of the actual HPC
facility supported batch scheduler.

Acknowledgement

The SCAILFIN project is funded by grants from the National Science Foundation (OAC-1841456,
OAC-1841471, OAC-1841448). We are grateful to the VC3 project and the University of Chicago for
the infrastructure provided for this work.

References

[1] T Simko et al., Search for Computational Workflow Synergies in Reproducible Research
Data Analyses in Particle Physics and Life Sciences, IEEE 14th International Conference
on e-Science (e-Science), Amsterdam, pp. 403-404 (2018)

[2] M Hildreth, K Hurtado Anampa, C Kankel, S Hampton, P Brenner, I Johnson, T Simko,
Large-scale HPC deployment of Scalable CyberInfrastructure for Artificial Intelligence
and Likelihood Free Inference (SCAILFIN), these proceedings (2019)

[3] D Thain, T Tannenbaum and M Livny, Condor and the Grid, Grid Computing: Making
The Global Infrastructure a Reality, ISBN: 0-470-85319-0 (John Wiley & Sons, 2003)

[4] M Jette, A Yoo, M Grondona , SLURM: Simple linux utility for resource management,
Lecture Notes in Computer Science 10.1007/10968987_3 (2003)

[5] M Rokas, P Brenner, S Hampton, M Hildreth, K Hurtado Anampa, I Johnson, C Kankel,
J Okraska, D Rodriguez Rodriguez, T Simko, Support for HTCondor high-throughput
computing workflows in the REANA reusable analysis platform, 15th eScience IEEE In-
ternational Conference, San Diego, United States, 24 - 27 Sep 2019, pp.eScience (2019)

[6] L Bryant, J Van, B Riedel, R Gardner, J Caballero Bejar, J Hover, B Tovar, K Hurtado
and D Thain, VC3: A Virtual Cluster Service for Community Computation, PEARC, 30,
1-8 (2018)

[7] GM Kurtzer, V Sochat, MW Bauer, Singularity: Scientific containers for mobility of
compute, PLoS ONE 12(5): e0177459. (2017)

[8] L Gerhardt, et. al., Shifter: Containers for HPC, Journal of Physics: Conference Series.
898. 082021. 10.1088/1742-6596/898/8/082021 (2017).

[9] T Priedhorsky, T Randles, Charliecloud: unprivileged containers for user-defined soft-
ware stacks in HPC, Conference: the International Conference for High Performance
Computing, Networking, Storage and Analysis 1-10. 10.1145/3126908.3126925 (2017)

[10] T Kosar, D Thain, M Albrecht, H Bui, Hoang, P Bui, R Carmichael, S Emrich, P Flynn,
Data Intensive Computing with Clustered Chirp Servers, Data Intensive Distributed Com-
puting, pp.140-154 DOI:10.4018/978-1-61520-971-2.ch006. (2012)

[11] D Thain and M Livny, Parrot: An application environment for dataintensive computing,
Scalable Computing: Practice and Experience, 6(3):9–18, (2005)

[12] B Tovar, N Hazekamp, N Kremer-Herman, D Thain, Automatic Dependency Manage-
ment for Scientific Applications on Clusters, IEEE International Conference on Cloud
Engineering (IC2E) (2018)

6

EPJ Web of Conferences 245, 07023 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024507023


