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Abstract. Vibration dampers are installed on the machine foundations in order to reduce the vibration
level. Such technological solutions are most expedient in the case of a harmonic load with a low instability
of the vibration frequency. Unfortunately, dampers do not provide such a large reduction in the dynamic
effect on the base, as vibration isolation, but in some cases their efficiency turns out to be quite sufficient
with a relatively simple implementation and low manufacturing cost. The use of dynamic vibration dampers
gives a great effect when an increased vibration of foundations occurs during the operation of equipment in
metallurgical production, for example, when processing materials by pressure, reconstructing enterprises
and replacing heavy equipment. During the operation of heavy forging equipment and manipulators for
various purposes, the foundations of these devices can be considered as a rigid body. The model soil on
which this foundation is installed can be considered a homogeneous elastic isotropic half-space. When
calculating with such mathematical models, one can use solutions of the corresponding dynamic contact
problems. A comparative analysis of the effectiveness of damping foundation vibrations using different
foundation models, including the model of an elastic, homogeneous half-space and a system of semi-infinite
rods, the modulus of elasticity of which increases with depth according to the quadratic law, shows a fairly
close agreement.

1 Introduction The boundary conditions for this problem can be
formulated as follows:
The classical equation of bending vibrations of a plate is 1. For a supported edge, deflection and bending
applicable with sufficient accuracy as long as the moment must be zero.
bending wavelength is not less than five times the plate
thickness [1]. For a rectangular plate loaded with lumped W =0, 52";’ + "’2";’ =0forx=00rx==a,
masses located periodically, the bending vibration ox %
equation has the form: or
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wherein i = 1,2,...my,j = 1,2,... m,.
! 2 W=0,%=0,f0ry=00ry=b. (2.2)
W(x,y,t) - deflection or deviation of the point (x, y)

from the equilibrium position. 2 Equations and mathematics

S - >~ — bending stiffness of the plate; Initial conditions:
12(1-v2)

aw
ph = q — plate mass per unit surface. Wxy 0 =exy),  F5==%). )

This equation can be used if the distance from the
edge of the plate to the point at which the vibrations are
considered is greater than the thickness of the plate h,
which in many cases can be considered as a constant

value. [2- 5]

An analytical solution to problem (1, 2, 3) is sought in
the form
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Substitute (4,5,6,7,8) into equation (1):
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Equating the terms of the equation from its left and
right sides with the same combinations at cos and sin, we
obtain the following system of equations
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After a slight simplification, the system of equations
will be reduced to the following form
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Since changes in the left and right sides of the
equation should occur with the same frequencies, the
modes of natural oscillations &, are excited at the
frequency of the acting force, i.e. the eigenfunctions
satisfy the orthogonality conditions:

=0,npuk #2r(n+1) +tm, r=0,12..
#0,npuk =2r(n+1)+m, r=0,1,2..
(%)

In this case, the following designations can be
introduced:
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In this case, the system of equations takes the form:
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We use the notation (*) for a new record of the
system (10).
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The characteristic equation of the problem has the

form
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From the characteristic equation we find the
dependence of Wy, onk and n.
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3 Results

A full spectrum of frequencies (13) of small transverse
vibrations of a rectangular plate with lumped masses,
located periodically, was obtained, provided that the
thickness of the plate remains constant. It should be
noted that p;; is the density of each of the concentrated
masses.

4 Conclusion

Based on the obtained results, the following conclusions
were reached:

1. To find the frequencies of natural vibrations of
plates loaded with concentrated masses, which are
located periodically, the hyperbolic equation is used. As
a result, we obtain the values of the natural frequencies
of such a rectangular plate. Depending on the type of the
given boundary conditions, it is possible to obtain
various types of dependence of the natural vibration
frequency with taking into account the geometry of the
plate and its mechanical properties, for example,
dependence on Poisson's ratio, or Young's modulus, etc.
It is easy to see that the value of the numerical value of
the frequencies strongly depends on the boundary
conditions.

2. When solving dynamic problems of this kind, it is
possible to use various boundary conditions, including
boundary conditions for a supported or embedded edge.
This allows us to investigate the differences in the
number of obtained natural vibration frequencies of
loaded plates.

3. The values of frequencies in problems of natural
vibrations of plates loaded with lumped masses increase
with decreasing thickness of the considered plate and do
not depend on the geometry of lumped masses. It is
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obvious that the considered lumped masses can be 44(9), 790-796 (2013)
considered as points having a mass much greater than https://doi.org/10.1002/mawe.201300068
the mass of the surrounding continuous medium: elastic,
viscoelastic, or plastic, at least in some -region around
this lumped mass.

The use of modern methods of mathematical and
functional analysis, the theory of functional series and
Fourier series and the theory of functions of a complex
variable to solve such problems, allows taking into
account the geometric properties of complex structures.
The use of methods for solving the equations of
mathematical physics in combination with precise
formulations of problems in the mechanics of a
deformable solid body allows creating new technological
solutions for which modern viscoplastic and composite
materials can be used. Such materials are necessary for
the implementation of new design solutions, since they
have low material consumption [6, 7]. It is clear that
modern structures created from modern viscoplastic and
composite materials should work reliably in the elastic
and viscoelastic regions under complex dynamic loads
[8, 9].
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