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Abstract. This paper is concerned with the physical mechanisms controlling shear-induced diffusion in dense
granular flows. The starting point is that of the granular random walk occurring in diluted granular flows,
which underpins Bagnold’s scaling relating the coefficient of self-diffusion to the grain size and shear rate.
By means of DEM simulations of plane shear flows, we measure some deviations from this scaling in dense
granular flows with and without contact adhesion. We propose to relate these deviations to the development of
correlated motion of grains in these flows, which impacts the magnitude of grain velocity fluctuations and their
time persistence.

1 Introduction

In granular flows, grains do not strictly follow the main
streamlines. Rather, their trajectories exhibit some degree
of randomness. This results in a process known as shear-
induced diffusion [1–5]. Figure 1 illustrates this process in
the case of a plane shear flow: when a packing is subjected
to some shear deformation, grains diffuse in the direction
transverse to shear. Shear-induced diffusion is a funda-
mental feature of granular flows. It is a direct driver of
grain mixing, which enhances the transfer of heat [6] and
counterbalances potential segregation effects [7].

Granular materials involve grains that are large enough
to be athermal. Unlike colloids or molecules, they do not
diffuse under the effect of thermal fluctuations. Rather,
grains can only diffuse if the material is being deformed
under the action of some external mechanical loading. In
shear flows the grain size d and the shear rate γ̇ are two
elementary scales from which one can dimensionally build
a macroscopic coefficient of diffusion D [1–5]:

D ∝ d2γ̇. (1)

We refer to this law as Bagnold’s scaling. According to
Einstein’s theory for a random walk, this scaling is con-
sistent with a simple characteristic trajectory: grains mak-
ing steps of size d in a random direction at a frequency γ̇.
This scaling is verified in diluted granular flows, where the
grains’ trajectory indeed involves a series of free, ballistic
flights interrupted by a binary collision with another grain.

However, deviations from that scaling were observed
in dense granular flows of cohesionless and cohesive
grains [8–10]. A qualitative way to understand the ori-
gin of these deviations is that grains interact via multi-
ple and sustained contacts in dense granular flows. This
means that they are not likely to experience a ballistic
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flight, which implies no contact, during an entire unit shear
deformation. As a result of these interactions, the kine-
matic field of dense granular flows features large velocity
fluctuations which are correlated in space and in time [11–
17]. This reflects the spontaneous development of tran-
sient clusters of grains, which move as a quasi-rigid body
during a finite period of time

These clusters introduce a meso-length scale ` that is
larger than a grain and a characteristic time scale that is
that of their lifetime T . From a purely dimensional point of
view, one could expect that these scales could be involved
in the Bagnold’s scaling, perhaps in conjunction with d
and γ̇.

The purpose of this paper is to analyse the deviation
from the Bagnold’s scaling for diffusivity in dense granu-
lar materials using the perspective of the clusters. In this
aim, we synthesise previously published results focusing
on (i) cohesionless flows at various inertial numbers [8]
and (ii) cohesive granular flows [10]. The underlying rea-
soning is that tuning these two control parameters (inertial
number and cohesion) affects the size and the life-time of
the clusters in different ways and that these variations will
highlight how ` and T might affect the diffusivity D.

2 Method

To measure both the macroscopic diffusivity and the in-
ternal kinematic in granular flow, we used a numerical
approach based on a discrete element method. The flow
configuration is that presented on figure 1: a pseudo-
bidimensional packing of 100 × 100 grains is subjected to
a plane shear flow, where both the shear rate γ̇ and the nor-
mal stress P are prescribed. Pseudo-bidimensional means
here that grains are all placed in the same plan {x, y} and
never move in the z-direction. However, they are consid-
ered to be cylinders with a diameter d and depth d in the
z-direction.
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Figure 1. Illustration of mixing resulting from shear-induced diffusion. An assembly of grains is sheared in the x-direction by applying
opposite velocities V at the top and bottom and a normal stress P. (a) Initially, grains located in the bottom half of the shear cell
are coloured in red and those in the top-half in blue; grains keep their colour during the flow. (b) After some shear deformation, a
mixing zone develops in the centre of the cell. The DEM simulations presented in the paper simulate this configuration: plane shear
flow prescribing the normal stress P and the shear rate γ̇, using periodic boundary conditions (represented with the dashed line). This
configuration leads to a homogenous shear state characterised by the linear velocity profile represented here, where vx(y) is the average
velocity of the grains located at the height y.

A polydispersity of d ± 20% on the grain diameter is
introduced to prevent crystallisation during shear. Grains
have a density ρ. They interact by direct contact, with no
long-range interactions. Contact forces involve a tangen-
tial Coulomb friction, a normal linear (Hookean) elastic
repulsion of stiffness k, a normal viscous dissipation and
a normal constant adhesion force f0. The contact param-
eters are set to the following values: the contact friction
coefficient is 0.5, the normal stiffness k/(Pd) is 104, the
viscous damping coefficient is such that a binary collision
has a coefficient of restitution of 0.5 in absence of adhe-
sion. The effect of these contact parameter on the rheolog-
ical property of granular flow is thoroughly discussed in
Refs. [18–22].

The two dimensionless numbers that will be varied in
the following are the inertial number I and the cohesion
number C, defined as:

I = γ̇ti; ti = d
√
ρ

P
; C =

f0
Pd2 . (2)

The inertial number will be varied from 5.10−3 to 0.5,
a range corresponding to the dense flow regime [18, 23].
C, which measures the intensity of the contact tensile
strength, will be varied from 0 to 10 [16, 17]. C = 0
corresponds to a cohesionless material. The maximum of
C = 10 is chosen as we observed that higher values some-
times lead to heterogeneous shear flows featuring a shear
band, which are not compatible with the analysis presented
below.

Selecting a value for I and C in these ranges, we ob-
tained steady and homogenous shear flows characterised
by statistically invariant stress and shear rate both in space
and in time. In particular, the use of periodic boundary
conditions in both directions prevents flow heterogeneities
that a solid wall would typically produce [24, 25]. Taking

advantage of the ergodicity of such flows, we measured
various quantities of interest considering both the entire
shear cell and the entire duration of the flow (50 shear
deformation). These quantities include the grain vertical
mean square displacement ∆, the grain velocity fluctuation
δv and the time persistence of these velocity fluctuations
Ψ, defined as:

∆(τ) = 〈(yi(t + τ) − yi(t))2〉; (3)

δv =

√
〈v2

i 〉 − 〈vi〉
2; (4)

Ψ =

∫ ∞
t′=0

〈δv(t)δv(t + t′)〉
δv2 dt′. (5)

yi and vi are the vertical component of the position and of
the velocity of grain i at a given time, and the angle brack-
ets represent the average operator considering all grains
and times t. The time Ψ is the integral of the autocor-
relation function of the grain velocity. It measures how
long, on average, the grain velocity remains nearly con-
stant. More details on how these quantities are measured
can be found in Ref. [8, 10].

3 Deviation from the Bagnold’s scaling

Figure 2 presents measurements of the diffusivity D ob-
tained by using the Einstein relation:

D =
1
2

lim
τ→∞

∆(τ)
τ

. (6)

The first observation is that cohesion enhances the dif-
fusivity, regardless of the inertial number. Within the ex-
plored range of parameters, this enhancement is signifi-
cant: it can reach an order of magnitude. The second ob-
servation is that the Bagnold’s scaling is recovered at high

2

EPJ Web of Conferences 249, 03035 (2021) https://doi.org/10.1051/epjconf/202124903035
Powders and Grains 2021



0 0.1 0.2 0.3
10

-1

10
0

10
1

C=0

C=0.5

C=1

C=2

C=5

C=7

C=10

Figure 2. Diffusivity D measured using (6) in flows with differ-
ent inertial numbers I and cohesion number C.

inertial number ( D
γ̇d2 is then nearly independent of I), both

for cohesionless and cohesive grains. In contrast, there is
a deviation from that scaling at low inertial numbers: the
diffusivity becomes dependent of I and the ratio D

γ̇d2 in-
creases as the inertial number decreases.

4 Insights from Green-Kubo relation

In order to understand the origin of these deviations, we
consider the Green-Kubo relation that expresses the dif-
fusivity in terms of the velocity fluctuation and their time
persistence:

D = δv2Ψ (7)

This relation points out that having a large diffusivity re-
quires the velocity fluctuation to have a large magnitude
and to be sustained in time.

Figure 3 shows the evolution of δv and Ψ with the iner-
tial number for various level of cohesion. Results suggest
the following scalings:

δv

γ̇d
≈ α(C)

1
I0.5 and

Ψ

ti
≈ β(C)

1
I0.75 . (8)

The effect of the cohesion is to increase both the mag-
nitude of the velocity fluctuations and their persistence
time, by increasing the coefficient α and β. Result sug-
gests a linear increase α(C) ≈ 0.3 + 0.04C and β(C) ≈
0.22 + 0.019C.

Figure 4 confirms the validity of the scaling 7 by com-
paring the diffusivities measured using (6) to δv2Ψ.

5 A cluster based diffusivity scaling

To connect these results to the existence of clusters in
granular flows, we consider the results presented in Ref.
[26]. This study considered the mixing of passive trac-
ers in a velocity field comprised of a rotating vortex of
size `v, rotating for a period of time tv at an angular veloc-
ity w before randomly changing position. This produces
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Figure 3. Velocity fluctuation δv (a) and their time persistence Ψ

(b) measured in flows with different inertial numbers I and cohe-
sion number C.The dashed lines represent a power low with an
exponent −0.5 and −0.75 for visual reference. Symbols repre-
sent different levels of cohesion as per figure 2. Insets show the
coefficient α and β obtained by fitting the data with Eq. (8), as
well as linear fits for α(C) and β(C) (solid lines).

some chaotic advection and induces the mixing of trac-
ers. The result of this study is that the effective diffusivity
of the tracers subjected to this advective field scales like
(`vwtv)2/tv. This is consistent with the following trajectory
of tracers at the edge of a vortex: they move over a step
of size `vwtv in a time step tv before the vortex changes
position.

Drawing an analogy between the mixing of grains and
the mixing these tracers, we identify (i) tv to the veloc-
ity correlation time Ψ, implying that Ψ measures a typi-
cal granular cluster lifetime T , w to γ̇ which measures the
scale of vorticity in the flow and (iii) `v to δv/γ̇. This im-
plies a relation between the velocity fluctuation and a typ-
ical granular cluster size ` = δv/γ̇. This relation is com-
patible with a cluster rotating as a rigid body at a rotation
rate γ̇, which yields a velocity for grains at the edge of the
cluster proportional to `γ̇.

Accordingly, we propose to express the shear-induced
diffusivity in terms of cluster size and lifetime as:

D = (`γ̇T )2/T (9)
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Figure 4. Diffusivity D measured using (6) compared with the
product δv2Ψ. The dashed lines represent the unity function for
visual reference. Symbols represent different level of cohesion
as per figure 2.

Relating ` and T to the velocity fluctuations and their
time persistence (` = δv/γ̇ and T = Ψ) yields D = δv2Ψ,
which corresponds to the Green-Kubo relation (7). Using
the scaling in Eq (8) enables us to translate this expres-
sion to an expression for the diffusivity in terms of the two
dimensionless control numbers I and C:

D ≈ α2 d2γ̇2

I
βti
I

3
4

= d2γ̇
α2β

I
3
4

(10)

This expression highlights how the inertial number I and
the cohesion C (via the parameters α(C) and β(C)) affect
Bagnold’s scaling of shear-induced diffusivity in dense
granular flows.

6 Conclusion
The results and analysis presented here provide informa-
tion at two levels.

Firstly, at the macroscopic level, they point out that the
diffusivity in dense granular flow generally deviates from
Bagnold’s scaling (1). This results from a contribution
from the inertial number and the cohesion number in the
presence of adhesion. The scaling (10) that we proposed
to capture the diffusivity may readily be used in continuum
models for granular flows provided that the two control-
ling dimensionless numbers I and C are known.

Secondly, they explain the microscopic origin of this
macroscopic diffusivity, in terms of velocity fluctuation
and their time persistence, or equivalently in terms of clus-
ter size and lifetime. This understanding may be useful to
further analyse the shear-induced behaviour of similar ma-
terials including dense suspensions, foams and emulsions,
which may exhibit a similar internal kinematic.
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