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Abstract. The question of how soft granular matter, or dense amorphous systems, re-arrange their micro-
structure under isotropic compression and de-compression, at different strain rates, will be answered by particle
simulations of frictionless model systems in a periodic three-dimensional cuboid. Starting compression below
jamming, the systems experience the well known jamming transition, with characteristic evolutions of the state
variables elastic energy, elastic stress, coordination number, and elastic moduli. For large strain rates, kinetic en-
ergy comes into play and the evolution is more dynamic. In contrast, at extremely slow deformation, the system
relaxes to hyper-elastic states, with well-defined elastic moduli, in static equilibrium between irreversible (plas-
tic) re-arrangement events, discrete in time. Small, finite strains explore those reversible (elastic) states, before
larger strains push the system into new states, by irreversible, sudden re-arrangements of the micro-structure.

1 Introduction

In non-Newtonian systems, complex fluids [1], colloidal
suspensions, [2], and especially granular matter in its flow-
ing states [3], the transport coefficients depend on various
state-variables such as the density and the granular temper-
ature [4]. This interdependence and the presence of energy
dissipation is at the origin of many interesting phenomena
like clustering [5], shear-band formation [6], jamming/un-
jamming [7, 8], dilatancy [9], shear-thickening [2, 10, 11]
or shear-jamming [8, 12, 13]. While granular gases are
very well described by kinetic theory [4], dense granular
fluids and granular solids are much harder to understand,
in particular since they can transit from fluid-like flowing
states to static, reversibly elastic ones. How and why they
achieve this is still under debate, e.g., by irreversible plas-
tic deformations [14–19], related also to creep/relaxation
[9, 20–22], and many other studies.

In the following section 2, we will first present a few
typical particle simulations from loading-unloading cy-
cles, for which we vary the compression strain rate over
orders of magnitude - with the goal to zoom-in to the slow
rate data to display understand what is going on during
plastic, irreversible re-arrangement events.

2 DEM particle simulations

The discrete element method (DEM) particle simulations
presented here are a simple element test in a periodic cubi-
cal cell, with only diagonal components of the strain-rate
tensor active. Only isotropic loading/un-loading is pre-
sented here, from many different alternative loading paths
(e.g., pure shear in plane strain or axial strain modes).
Deformations are applied to all particles, each time-step,
∗e-mail: s.luding@utwente.nl

while at the same time the periodic cell size also changes,
accordingly. The reference model is using N = 4913 fric-
tionless particles (µp = 0), with particle diameters drawn
from a random homogeneous size distribution with max-
imum to minimum width, w = dmax

p /dmin
p = 3, similar

to the particles used in Ref. [12], and many references
therein. The contact model is the simplest linear spring-
dashpot model, set to frictionless (resulting in higher pack-
ing densities), since only this allows to focus on (irre-
versible) structural re-arrangements rather than contact
sliding events.

2.1 Non-dimensionalization of DEM

The parameters given in the following with a prime, e.g.,
ρ
′

p = 2000 or d
′

p = 2, are used in the simulations shown
in this paper. For working with units, there are two alter-
natives: Either one can read the numbers in chosen units
1 or the units are chosen based on physical properties to
achieve non-dimensional quantities. The latter option is
adopted here, i.e., the unit of length is chosen as the mean
particle diameter, x

′

u = 〈d
′

p〉 = 2, so that 〈dp〉 = 1 is
the dimensionless diameter. The second unit is the ma-
terial density, ρ

′

u = ρ
′

p = 2000, so that one has the di-
mensionless density, ρ = φ, and thus the unit of mass,
m
′

u = ρ
′

u(x
′

u)3, i.e., the particle mass, mp = (π/6). For the
third unit one has several choices, where we adopt here the
units of elastic stress, σ

′

u = k
′

n/d
′

p, with the linear normal
contact stiffness, k

′

n = 105, which yields the dimension-
less stress σ = σ

′

d
′

p/k
′

n, and results in the unit of time

1Units could be chosen as: length, x
′

u = 0.5 × 10−3 m, time, t
′

u =

10−5 s, and mass, m
′

u = 1.25 × 10−10 kg, to match experimental values:
d̂p = d

′

p x
′

u = 1 mm, ρ̂p = ρ
′

uρ
′

p = 2000 kg m−3, etc.
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Figure 1. Dimensionless pressure p = p′d/kn plotted against volume fraction for loading (left) and unloading (right) with different
strain rates indicated in the legend (every X means 10 times slower), as explained in the main text. Note that the data almost collapse,
i.e., for these slow strain rates, pressure is almost independent of rate. The symbols at t0 and t f mark beginning and ending of the
simulations, respectively.
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Figure 2. Kinetic to potential energy ratio Ek/Ep plotted against volume fraction, from the same simulations as in Fig. 1 with same
colors/symbols. The horizontal lines are the ratio of unity (1), indicating the dynamic jamming/un-jamming transition point, and
E0 = 10−8, an arbitrary threshold below which the system XXS can be considered static, elastic, reversible in mechanical equilibrium.
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Figure 3. Coordination number, C∗ (without rattlers), plotted against volume fraction, from the same simulations as in Fig. 1 with same
colors/symbols. The three horizontal lines indicate the levels C = 4, 5, and 6, where the jamming/un-jamming, here, occurs at C∗J = 6.

t
′

u = (m
′

u/k
′

n)1/2 = 0.4 2. In the chosen units, the dimen-
sionless linear stiffness is kn = k

′

n(t
′

u)2/m
′

u = 1, and the lin-
ear contact viscosity, γ

′

n = 103, becomes γn = γ
′

nt
′

u/m
′

u =

γ
′

n/[k
′

nt
′

u] = 4×10−3, with background viscosity, γ
′

b = 102,
or γb = γ

′

bt
′

u/m
′

u = 4 × 10−4.
The consequent physically relevant properties are the

restitution coefficient r = exp(−ηtc) ≈ 0.855, with damp-
ing factor η = γn/(2m12), reduced mass, m12 = 0.063,
and contact duration, tc = π/

√
kn/m12 − η2 = 0.79, or

t
′

c = tct
′

u = 0.316, all considered for a contact between
the largest and the smallest particle, with the larger vis-

2The alternative dimensionless stress: σγ = σ
′
/[ρ

′

p(d
′

pγ̇
′
)2], with the

unit of time set by the shear rate, t
′

u = γ̇
′
, is more useful for collisional

shear flows, see Ref. [23], and is thus not adopted here.

cous damping time-scale, tv = 2m12/γn ≈ 5, and the even
larger background damping time-scale tb = 2m12/γb ≈ 50.
Note that this choice of units corresponds to setting t

′

u ∝ t
′

c.

2.2 Rate-dependent loading and un-loading

In this subsection, four simulations are compared with
different applied (constant) isotropic strain-rates: ε̇v =

1.05 × 10−7 s−1 (XXXS), ε̇v = 1.05 × 10−6 s−1 (XXS),
ε̇v = 1.05 × 10−5 s−1 (XS), and ε̇v = 1.05 × 10−4 s−1 (S).
where the letter codes refer to Slow (S), eXtra-Slow (XS),
etc., for both loading and un-loading, i.e., every X corre-
sponding to 10 times slower.

Next, some physical quantities are plotted for loading
(L) and unloading (UL). The dimensionless pressure, p =

2
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Figure 4. Bulk modulus, B = dp/dεV , plotted (only for Ek/Ep < E0) against volume fraction, from the same simulations as in Fig.
1, with same colors/symbols. Due to the rather low threshold E0, the faster simulations (S and XS) do not show up here, see Fig. 2.
Due to the discrete differentiation, the vertical peaks do not indicate B but the beginning/ending of a plastic, reorganization event with
considerable dynamics.

p′dp/kn, in Fig. 1, shows not much differences between
the different rates, even for the largest rate it is only a tiny
bit larger.

The energy ratio, Ek/Ep, in Fig. 2, is strongly rate
dependent, with approximately two orders of magnitude
difference between simulations that feature different rates
with factors of 10 between each other.

The coordination numbers, C∗, in Fig. 3, are also very
similar, only the fastest simulation slightly undershoots the
others, but on this scale not much differences can be seen.

The bulk (tangent) modulus, B, in Fig. 4, only shows
up for the two slowest simulations, due to the small, ar-
bitrary E0, and not much differences can be seen in the
elastic modulus, only the peaks that indicate plastic, irre-
versible rearrangement events are different. Besides that,
note that the peaks on the unloading branch are much
less frequent due to the higher stability of previously pre-
compressed packings, consistent with previous results, see
Ref. [12] and references therein.

2.3 Rate-dependent jamming and un-jamming

In Fig. 5 we next focus on jamming and un-jamming at
different rates. While faster simulations, panels (a) and
(b), considerably deviate, the two slowest simulations,
panels (c) and (d), are in (almost) perfect agreement, in
particular concerning the unjamming density. Only the
early jamming regime (at densities below 0.67) is differ-
ent, with slightly lower pressure and discrete events vis-
ible for XXXS (d). Panel (a) represents the largest rate
with considerable kinetic energy K = Ek/Ep even above
jamming (here the kinetic contribution to total energy,
K/(1 + K) ∈ [0 : 1] is plotted). The dynamic kick-in, left,
in the yellow area, below jamming, is only a transient from
the initial condition, starting at ρ0 = 0.65778, with rather
large initial kinetic energy, i.e., not to be seen as steady
compression from far below jamming, rather starting from
a dynamic state close to jamming.

But how to identify the jamming density?
For decompression, the pressure P (blue lines) drops

linearly and thus allows for a straightforward identifica-
tion of φu

J , unlike during compression, when the pressure P
increases rather smoothly, with some wiggles, displaying

(a) 100 times faster (S)
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(b) 10 times faster (XS)
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(c) reference run (XXS)
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(d) 10 times slower (XXXS)
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Figure 5. Zoom into the jamming/un-jamming regime, where
the simulation in panel (c), with strainrate ε̇v = 1.05 × 10−6 s−1,
is used as reference case. Shaded areas are explained in the main
text, and the arrows indicate the direction in which the physi-
cal quantities develop during jamming/un-jamming. The simula-
tions are the same as in the previous subsection 2.2.

even some drops, most clear for the smallest compression
rate in panel (d). Jamming is not well defined during con-
tinuously ongoing compression, due to these plastic events
overlapping; events can only be seen in P if there is enough
time between them for the system to relax all fluctuation

3
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energy down close to zero, which is not possible for the
faster rates. Thus, close to jamming, even the slowest sim-
ulation is not slow enough!

As second indication of the jamming transition [7, 24],
the kinetic energy ratio K/(1 + K) (red) decays from unity
down to zero in the jamming region (yellow) and reaches a
low (yet rate-dependent) level with a considerable elastic
stress backbone (cyan), before it drops even stronger from
the right end of the cyan regime up. For ongoing compres-
sion, the kinetic energy becomes considerably smaller and
smaller than the potential energy - except during plastic
re-arrangement events (not visible in this scale).

The jamming transition is identified as the margin be-
tween yellow and cyan, which is placed at the transition of
the coordination number C∗ (green) to above its isostatic
value, C∗ ≥ C∗0 = 6 (thin black dotted line, for friction-
less particles, as used here). This transition is based on a
fit/smoothing of the data, and thus not considering the wig-
gles in the coordination number, as they are considerable
during jamming.

3 Conclusion

To summarize, “microscopic” DEM particle simulations
with different strain-rates were used to track jamming and
unjamming during one loading (over-compression) and
un-loading cycle. For the frictionless model system used
here, a considerable difference between jamming and un-
jamming volume fractions is observed, which was ex-
plained previously by a series of irreversible system re-
arrangement events [12], – some local (involving only few
particles), some global (involving many particles) – fre-
quent and strong during loading – much less during un-
loading. Every event results in a change of the jamming
density, increasing during loading, and only partly recov-
ering during unloading, as described in detail in Ref. [25].

The “mesoscopic” system re-arrangement events that
sometimes concern only a few particles, but sometimes
also most of the system, can be tracked and identified
from macroscopic information such as stress, or better ki-
netic energy, if the deformation rate is small enough. For
larger pressure, the system is much less sensible to the
rate, and – except for the fastest simulation – the system
has enough time between events (discrete in time) to re-
lax back to hyper-elastic, mechanically stable states – re-
versible if strain is reversed – that also have a well defined
elastic bulk modulus.

However, even the smallest rate used here does not
succeed to separate events very close to jamming, since
their relaxation times are still too long. Thus, even slower
deformations have to be performed close to jamming in
order to study those events.

Further work in progress concerns the understanding
of the effect of system size, and of more realistic frictional
particles. Open is still how the re-arrangement events look
like and how to bring those local and global events (pos-

sibly a superposition of many, or an avalanche from local
events) into a macroscopic continuum theory [25]. The
fact that different rates lead to different packings (with dif-
ferent jamming density) is also relevant for packing gen-
eration procedures, and a more quantitative study of the
relaxation times for different densities above jamming is
ongoing and will be published elsewhere.

References

[1] J.P. Hansen, I.R. McDonald, Theory of Simple Liq-
uids (Academic Press, 1986)

[2] A. Nicolas, E.E. Ferrero, K. Martens, J.L. Barrat,
Rev. Mod. Phys. 90, 045006 (2018)

[3] H.M. Jaeger, S.R. Nagel, R.P. Behringer, Rev. Mod.
Phys. 68, 1259 (1996)

[4] T. Pöschel, S. Luding, Granular gases, Vol. 564
(Springer Science & Business Media, 2001)

[5] S. Luding, Nonlinearity 22, R101 (2009)
[6] M. Lätzel, S. Luding, H.J. Herrmann, D.W. Howell,

R.P. Behringer, Eur. Phys. J. E 11, 325 (2003)
[7] F. Göncü, O. Durán, S. Luding, AIP Conf. Procs.

1145, "Powders and Grains" pp. 531–534 (2009)
[8] D. Bi, J. Zhang, B. Chakraborty, R.P. Behringer, Na-

ture 480, 355 (2011)
[9] J. Ren, J.A. Dijksman, R.P. Behringer, Phys. Rev.

Lett. 110, 18302 (2013)
[10] R. Mari, R. Seto, J.F. Morris, M.M. Denn, Proc. Nat.

Acad. Sci. 112, 15326 (2015)
[11] A. Singh, R. Mari, M.M. Denn, J.F. Morris, J. Rhe-

ology 62, 457 (2018)
[12] N. Kumar, S. Luding, Granul. Matt. 18, 1 (2016)
[13] D. Wang, J. Ren, J.A. Dijksman, H. Zheng, R.P.

Behringer, Phys. Rev. Lett. 120, 208004 (2019)
[14] I. Einav, A.M. Puzrin, J. Geotech. Geoenviron. Eng.

130, 81 (2004)
[15] R.G. Wan, M. Pinheiro, P.J. Guo, Int. J. Numer. Anal.

Meth. Geomech. 35, 140 (2011)
[16] M.L. Manning, A.J. Liu, Phys. Rev. Lett. 107,

108302 (2011)
[17] Q. Zhang, K. Kamrin, Phys. Rev. Lett. 118, 058001

(2017)
[18] A.A. Long et al., Granul. Matt. 21, 99 (2019)
[19] E. Alaei, B. Marks, I. Einav, preprint (2021)
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