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Abstract. Knowledge transfer from micromechanics of granular media failure to geohazard forecasting 
and mitigation has been slow. But in the face of a rapidly expanding data infrastructure on the motion of 
individual grains for laboratory samples – and ground motion data at the field scale – opportunities to 
accelerate this knowledge transfer are emerging. In particular, such data assets coupled with data-driven 
approaches enable ‘new eyes’ to re-examine granular failure. To this end, effective strategies that can jump 
scales from bench to field are urgently needed. Here we demonstrate one strategy that focusses on the study 
of deformation patterns in the precursory failure regime using kinematic data. Unlike previous studies which 
focus on regions of high strains, here we probe the development and evolution of near-undeforming regions 
through the lens of explosive percolation. We find a common dynamical signature in which undeforming 
regions, which are initially transient in the precursory failure regime, become persistent from the time of 
imminent failure. We demonstrate the robustness of these findings for data on individual grain motions in a 
classical laboratory test and ground motion in two real landslides at vastly different scales. 

1 Introduction 
Marcel Proust once said “The real voyage of discovery 
consists not in seeking new landscapes, but in having 
new eyes” [1]. Past studies of the micromechanics of 
deformation, aimed toward improving fundamental 
understanding of the precursory failure regime, have 
largely focused on the evolution of regions of high strain 
[2-8]. In this study, we not only cast new eyes on 
deformation, but we also focus on the opposite extreme. 
That is, we examine the evolution of zones of vanishing 
deformation in the lead up to, at incipient and during 
failure – at both laboratory and field levels. Data on the 
kinematics of a well-studied discrete element simulation 
of a planar biaxial compression test [6-9] and two open 
pit mine slopes are examined in search of a common 
dynamical signature [9-11]: see Biax, M1 and M2 in 
Fig. 1. The aim is to improve fundamental knowledge of 
granular failure and help advance data-driven tools for 
geohazard forecasting and mitigation (e.g., [9-11]). 

Studies of near undeforming regions in granular 
media have mainly focused on so-called “dead zones” 
which develop around solid bodies and structures [12-
14]. By far the most well-known are those that emerge 
in soil-solid interaction studies where the soil is in 
contact with various bodies: foundation, tillage 
implements and penetromers, off-road vehicles and 
biophysical intruders (e.g., [13-14] and references 
therein). The dead zones may be static or may move in 
near rigid-body motion, sometimes at the same velocity 
as the solid body. In the classical problem of indentation 
by a flat punch, Prandtl [15] hypothesized the presence 
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of a dead zone beneath the punch and various 
experiments have confirmed this for different granular 
materials (e.g., Biarez’s experiments in Fig. 1a) [13].  
 

  
a) Dead zone beneath a 

punch from J. Biarez 
 

 
b) Shear band in Biax 

 

       

 
c) Slope M1 and landslide 

location 

 

        

 
d) Slope M2 and landslide 

location 
Fig. 1. Kinematics at failure across scales. 
 

More generally, near rigid-body moving regions also 
emerge in geological hazards like landslides, such as 
when a rock mass begins to detach from the host rock 
and moves downslope under gravity [16], or near 
obstacles along the paths of earthflows and debris flows 
[17]. Yet, despite their prevalence in granular failure and 
flow, the dynamics of these endogenous structures, 
whether transient or persistent, remains largely 
unexplored. Here our objective is to identify and study 
the dynamics of undeforming regions throughout the 
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precursory failure regime from displacement data on 
systems with vastly different spatial scales: individual 
grain motion in a biaxial compression test and ground 
motion radar data on a landslide in two slopes, one 
spanning hundreds of meters while the other is over a 
kilometer wide. To the best of our knowledge, this is 
among the first efforts which directly relate granular 
micromechanics to the monitoring of a developing 
landslide using state-of-the-art remote sensing data. 

2 Data 
Three data sets, labeled Biax, M1 and M2, are 
examined. Biax has been characterized and reported in 
many papers (e.g., [6-10]), while M1 and M2 are 
described in [9-10]. Let 𝒏 be the total number of 
observation points in the studied system: grains in Biax 
and pixel locations in Mi (i=1,2). Biax is a discrete 
element simulation of an assembly of 𝒏 = 𝟓𝟎𝟗𝟖 
polydisperse spherical grains, submitted to planar 
biaxial compression test, under constant confining 
pressure [6]. A total of 𝑵 = 𝟏𝟓𝟎	equilibrium strain 
states, labelled 𝒕 = 𝟏, 𝟐, . . , 𝟏𝟓𝟎, are analyzed. Global 
dilatation initiates at 𝒕 = 𝟓𝟎. Force chains collectively 
buckle from around 𝒕 = 𝟗𝟖, in turn triggering a brief 
period of strain softening that culminates in a fully 
formed shear band at 𝒕𝑭 = 𝟏𝟎𝟒.  The micromechanics 
of this initially homogeneous sample has been 
comprehensively studied against various experiments in 
2D and 3D (e.g., photoelastic disks [8] and sand [7-8]).  

M1 and M2 are time series data from two developing 
rockslides [9-10]. These landslides occurred in two 
separate operational open pit mines. The mine 
operation, location and year of the rockslides are 
confidential. Ground-based slope stability radar 
technology was used to deliver continuous 1D 
measurements of line-of-sight (LOS) surface movement 
of the rock slope at sub-millimeter precision; 
consecutive time measurements are 6 minutes apart. 
Slope M1 is an unconsolidated material which stretches 
to around 200 m in length and 40 m in height (Fig. 1). A 
total of 𝑛 = 1803 pixel locations, spread across the 
entire slope, were monitored for a period of 𝑁 = 	4000 
time states: 17 days, from 10:07 May 31 to 9:06 June 17. 
On June 15, a rockslide occurred on the western side of 
the slope with an arcuate back scar and a strike length of 
around 120 m. The global peak velocity is 0.56 mm/min 
which was recorded at 𝑡" = 3568 (13:10 June 15): we 
refer to 𝑡" as the time of failure. A ``competing slide'' 
emerged to the southeast region. This second region of 
instability intermittently developed large movements, 
but self-stabilized the day before the collapse of the west 
wall. The same phenomenon is observed in laboratory 
tests on sand samples where competing shear bands 
sporadically form just before failure but which later 
disappear to give way to the ``winning'' so-called 
persistent pattern of shear band(s) in the failure regime 
[2-4]. The studied area of M2, spanning 1.28 km wide 
and around 224 m high, was monitored for 𝑁 = 	1355 
time states: approximately 6 days from 15:39 August 19, 
until 07:05 August 25, across 𝑛 = 5394 pixel locations. 
A rockslide occurred on the southeast wall at 𝑡" =

1315	(03:00 August 25). Here, without loss of 
generality, we present results for a smaller 2-part region 
𝓢+𝓕, where part 𝓕 is the region of catastrophic failure 
(source area of 1 million tonnes of collapsed rock 
material) and part 𝓢 is the immediate surrounds of 𝓕. 
Note that a separate study of this data has shown that 𝓢 
sufficiently captures the dynamics of deformation of the 
rest of the monitored region which did not collapse [10].  

3 Method 
We adopt the explosive percolation analysis in [9], 
inspired by the work in [18]. Different from [9], 
however, here we focus our attention on the 
undeforming regions, namely groups of points which 
form connected clusters in both physical space and 
kinematic space. We call these the physical-kinematic 
clusters 𝐶. Identification and analysis of the dynamics 
of 𝐶 proceed in three steps.  

In Step 1, we map the data to the kinematic state 
space Ω that summarizes the motion in the form of a 
point pattern ℘. Each point in ℘ is described by its 
displacement vector (𝑢# , 𝑢$) in Biax; or by the 1-
dimensional LOS displacement (𝑢) in the case of M1 
and M2. Each strain state 𝑡 of the loading period in Biax 
has a corresponding ℘(𝑡), 𝑡 ∈ [1,150]; the same applies 
for every time state 𝑡 of the monitoring campaign 𝑡 ∈
[1,3568] for M1 and 𝑡 ∈ [1,1355] for M2. 

In Step 2, we generate the order parameter 𝑝(𝑟, 𝑡) 
vs. 𝑟	profiles for each ℘(𝑡). In essence, this profile 
identifies the dominant or largest components in ℘(𝑡), 
as well as summarizes their dynamics. We limit our 
attention to clusters that are of size greater than 10% of 
𝑛. Clusters in ℘(𝑡) are groups of near-colocated points 
in Ω, namely, pixels with very similar motion. To find 
these clusters, points within a kinematic-distance 𝑟 in Ω 
are classified in the same cluster. The growth in the size 
of the largest cluster, 𝑝(𝑟, 𝑡) = 	𝐺(𝑟, 𝑡)/𝑛, is tracked as 
𝑟 is systematically increased, such that 𝐺(𝑟, 𝑡) is the 
number of points in the largest cluster. In the absence of 
a clustering pattern in Ω, 𝑝(𝑟, 𝑡) should increase with 𝑟 
continuously until the largest cluster contains all 𝑛 
points. On the other hand, as time advances towards 
failure and as strain localization patterns begin to form, 
member points may form transient undeforming 
clusters: groups of grains/pixels which briefly move in 
near-rigid motion. Such partitioned motions result in 
multiple discontinuous jumps in 𝑝(𝑟, 𝑡) as 𝑟 increases. 
Each such jump or “explosive” growth in the size of the 
largest cluster results when a cluster is amalgamated into 
the largest cluster. These mergers lead to a distinctive 
stair-case pattern of consecutive “run-rise” cycles in the 
profile 𝑝(𝑟, 𝑡) vs. 𝑟. The height of each “rise” 
corresponds to the size of the newly merged cluster, 
while the width of each “run” preceding the rise 
corresponds to the kinematic separation, the difference 
between the mean displacements of points in the largest 
cluster and its newly subsumed members. The width of 
the last run or plateau that result in a system-spanning 
cluster increases as failure draws near. In M1 and M2, 
this corresponds to the active region beginning to detach 
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from the host rock and accelerate downslope [9].               
 In Step 3, we find the set of physical-kinematic 
clusters 𝐶(𝑡)	in	℘(𝑡). We map each dominant kinematic 
cluster from Step 2 into the physical network: contact 
network of Biax or the radar grid of Mi, to see which of 
these also form clusters in physical space. That is, we 
identify in the physical network of Mi those nodes from 
the dominant kinematic clusters and eliminate all other 
nodes in this physical network. In general, this results in 
a multi-component graph, out of which we select the 
largest components. For the cases studied here, two 
physical-kinematic clusters 𝐶(𝑡)	emerge: these 
essentially share the same membership as the dominant 
kinematic clusters from Step 2. That is, kinematic 
clusters reveal collective motion in the physical body. 
To quantify their dynamics, the time evolution of the 
Jaccard index 𝐽, 0 ≤ 𝐽 ≤ 1, a measure of the similarity 
of the clusters 𝐶(𝑡)	across two consecutive time states, 
is examined to determine transience or persistence of 
clusters 𝐶(𝑡)	in the lead up to and during failure. 𝐽 =
1	(𝐽 = 0) means the clusters at two consecutive time 
states have the same (no common) member points.  
 

 
a) Biax 

 
b) M1 

 
c) M2 

Fig. 2. Time evolution of the Jaccard index 𝐽. For Biax, the 
stress ratio is included and the axial strain states correspond to 
the analyzed time states. The initial transition state,	𝑡𝑖 (dotted 
line), is the state from which the clustering persistence rapidly 
increases. The earliest state when the clustering pattern 
stabilizes, 𝑡∗ (dashed line), may be used as an indicator of 
imminent failure. Time of failure is 𝑡# (solid line). 

4 Results 
The evolution of undeforming regions in the pre-failure 
regime is shown in Figs. 2-5. In the early stages 𝑡 < 𝑡%, 
no persistent clustering manifests in the systems (Fig. 2). 
The interaction between the two competing slides in M1 
leads to pronounced fluctuations in 𝑡 < 𝑡% (Fig. 2b). 
That said, M1 shows relatively better clustering 
persistence across 𝑡 < 𝑡% compared to Biax and M2 
where 𝐽 is around 0.25 or less (Fig. 2a,c). The visual of 
℘(𝑡) at 𝑡% in the kinematic space (Fig. 3a) shows that the 
kinematic clusters in the early time states are still either 
spread-out in Ω as is the case in Biax, or, are obscured 
by the relatively large number of noise points in M1 and 
M2. Note that noise from various perturbations like 

blasting, drilling, weather conditions and truck 
movements are present since these are operational 
mines. But since we are interested in methods that are 
robust to noise, we did not perform any filtering or 
preprocessing of the data for M1 and M2.  

 

   
a) Biax at 𝑡$ = 35, 𝑡∗ = 61, and 𝑡# = 104 

   
b) M1 at 𝑡$ = 3295, 𝑡∗ = 3380, and 𝑡# = 3568 

   
c) M2 at 𝑡$ = 311, 𝑡∗ = 345, and	𝑡# = 1315 

Fig. 3. Development of two clusters in kinematic state space 
Ω. Kinematic separation and compactness of clusters increase 
in Biax as 𝑡 → 𝑡#. Since Ω	is 1D in M1 and M2, a frequency 
histogram of 𝑢 is more informative than a visual of ℘(𝑡). Red 
dots in (a) or bars in (b,c) correspond to points in the fastest-
moving cluster; gray dots or bars are non-cluster points.  
 

 
a) Biax at 𝑡∗ = 61 

 
b) M1 at	𝑡∗ = 3380 

 
c) M2 at 𝑡∗ = 345 

Fig. 4. The physical-kinematic clusters 𝐶(𝑡∗)	in the physical 
space. The fastest-moving cluster (red) is the “active” or high 
landslide risk region in M1 and M2. Gray grains or pixels do 
not belong to the kinematic clusters. 
 

As failure draws near, the clustering persistence 
starts to increase rapidly from 𝑡% until 𝑡∗, from which 
𝐽(𝑡) remains high above 0.75. This suggests that the 
clustering patterns in the ensuing states are highly 
similar to the pattern identified at 𝑡∗, such that an early 
prediction of the impending failure region is now 
possible (Figs. 2-4). In all systems, two dominant 
clusters emerged over  𝑡 ≥ 𝑡∗. In Biax, 𝑡∗= 61 is well 
before peak stress (𝑡	= 98) and 𝑡" = 104. In M1, 𝑡∗ =
3380 =	18:05 June 14 is about 19 hours in advance of 
the time of collapse. In M2, the failure region can be 
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predicted at t* = 345 = 02:03 August 21, which is over 
4 days prior to the collapse on 03:00 August 25. A 
further confirmation of the prediction at 𝑡∗ can be seen 
in the increasing kinematic separation of the clusters in 
℘ (Fig. 3). Also, we can compare Fig. 4 to the actual 
failure location in Fig. 1. The adjacent boundaries of the 
kinematic clusters in the physical space in Biax matches 
well the shear band boundaries: compare Fig. 4a to Fig. 
1b. The red active cluster for M1 and M2 in Fig. 4b,c 
accurately predicts the location and geometry of the 
landslides in Fig. 1c,d, respectively. 
 

 
a) Biax 

 
b) M1 

 
c) M2 

Fig. 5. The order parameter 𝑝(𝑟)	𝑣𝑠. 𝑟 profiles at different 
strain or time states: 𝑡$ (red dotted line), 𝑡∗(blue dashed line), 
and 𝑡# (black solid line). 
 

The kinematic separation of the clusters can also be 
seen in the order parameter 𝑝(𝑟) (Fig. 5). At 𝑡% ,	when the 
impending failure location is first predicted, we observe 
a continuous transition to a system-spanning component 
at a small value of 𝑟. Closer to failure, a long plateau in 
𝑝(𝑟) develops during which increases in 𝑟 merely lead 
to the addition of no links or intra-cluster links in 
𝐺(𝑟, 𝑡). An inter-cluster link finally forms at a large 
value of 𝑟 = 𝑟'(%), where the largest cluster merges with 
the next largest cluster to form a system-spanning 
component. In [9], it was shown that the time evolution 
of 𝑟'(%) correlates well with energy dissipation for Biax 
and manifests a sharp burst to a peak in the strain 
softening regime. Such an increasingly delayed 
transition is similar to what is observed in explosive 
transitions by D’Souza and Nagler [19]. 

5 Conclusion 
The evolution of undeforming regions in a granular 
system is examined using a newly developed data-
driven method based on the concept of explosive 
percolation. Kinematic data from three distinct systems 
are studied. One comprises individual grain motions 
from a simulation of a classical laboratory test in which 
the granular material is driven to failure, the other two 
are measurements of surface ground motion from 
ground-based radar monitoring of a developing 
landslide. Results demonstrate common aspects of 
dynamics in these vastly different systems. Ongoing 

work is now focused on more advanced methods that not 
only identify quasi-undeforming regions but quantify 
the dynamics of their interactions with different strain 
localization modes, such as microbands and shear 
bands, in confined as well as partially confined systems 
(e.g., retaining walls) across scales. We hope this work 
paves the way for studies that can jump scales and 
bridge the gap between fundamental micromechanics of 
granular failure and data-driven methods for forecasting 
and mitigation of geohazards like landslides. 
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