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Abstract. Granular media consist of a large number of discrete particles interacting mostly through contact
forces that, being dissipative, jeopardizes a classical statistical equilibrium approach based on energy. Instead,
two independent equilibrium statistical descriptions have been proposed: the Volume Ensemble and the Force
Network Ensemble. Hereby, we propose a procedure to join them into a single description, using Discrete
Element simulations of a granular medium of monodisperse spheres in the limit state of isotropic compression
as testing ground. By classifying grains according to the number of faces of the Voronoï cells around them,
our analysis establishes an empirical relationship between that number of faces and the number of contacts on
the grain. In addition, a linear relationship between the number of faces of each Voronoï cell and the number
of elementary cells proposed by T. Aste and T. Di Matteo in 2007 is found. From those two relations, an
expression for the total entropy (volumes plus forces) is written in terms of the contact number, an entropy
that, when maximized, gives an equation of state connecting angoricity (the temperature-like variable for the
force network ensemble) and compactivity (the temperature-like variable for the volume ensemble). So, the
procedure establishes a microscopic connection between geometry and mechanics and, constitutes a further
step towards building a complete statistical theory for granular media in equilibrium.

1 Introduction

Granular media, like sand, coffee grains or mineral rocks,
consist of a large number of discrete particles interact-
ing mostly through contact forces [1]. Since their macro-
scopic properties arise from microscopic interactions, they
should be perfect systems for applying statistical mechan-
ics; however, the interactions are dissipative, which makes
them hard to describe by using energy and temperature
as main variables [2]. Instead, two main statistical equi-
librium approaches have been proposed: the Edwards’
Volume Ensemble [3, 4], which accounts for all grains’
configurations in mechanical equilibrium inside a given
volume, and the Force Network Ensemble, developed by
Snoeijer, Tighe and coworkers[5–7], which takes into ac-
count all sets of contact forces in mechanical equilibrium
with a given external stress. Nevertheless, a relationship
between the compactivity χ and the angoricity α−1 (i.e.
the temperature-like variables for those ensembles) has not
been established.

Hereby, we propose how those two ensembles could
be combined for the limit state of isotropic compression
of a set of monodisperse spheres. This is done by look-
ing at the statistical distribution of volumes for Voronoï
cells with the same number of faces s and the statistical
distribution of pressures for grains with the same number
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of contacts z. Next, an empirical relationship connecting
s and z is established that allows to find a connection be-
tween χ and α−1 by minimizing the total entropy against
the coordination number z.

2 Aste and Di Mateo’s volume ensemble

Edwards’ Volume Ensemble takes the volume as the main
thermodynamic variable, with an entropy accounting for
all possible geometric configurations inside a total vol-
ume VT obeying volume exclusion and mechanical sta-
bility with external constraints, i.e. all possible jammed
states [4, 8]. In a illuminating proposal by Aste and Di
Mateo [9] the volume VT is divided into C statistically in-
dependent elementary cells of volume vi > vmin, where vmin

is a minimum volume due to steric exclusion. Because in
isotropic compression the shape of such elementary cells
should not be relevant, their volumes will be the degrees
of freedom (DOF) for the system. Thus, we can define
a phase space of C dimensions where each coordinate is
the excess volume v′i = vi − vmin for each elementary cell.
Then, it is possible to derive [9, 10] that the probability for
a singe elementary volume to take the specific value v is

p(v) =
1

〈v〉 − vmin
exp

(
v − vmin

〈v〉 − vmin

)
, (1)

where 〈v〉 = VT /C is the average volume per cell. So, the
entropy for a single cell can be calculated as S 1 = 1 +
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ln
(
〈v〉−vmin

Λ3

)
; and since the entropy is an extensive quantity,

the entropy for all C independent cells is

S C = C
[
1 + ln

(
〈v〉 − vmin

Λ3

)]
, (2)

where Λ is a reference length 1. The temperature-like vari-
able 1

χ
= ∂S

∂VT
⇒ χ = VT

C − vmin coincides with Edward’s
compactivity and indicates how much free volume is there
per elementary cell. Although we don’t know for sure
what those elementary cells are, by performing a Voronoï
tessellation and assuming that each tessellation cell con-
tains approximately the same number of kv elementary
cells, it follows that Voronoï cells volumes Vvoro should
exhibit a k − gamma distribution [11],

P(Vvoro) =
1

Γ(kv)χkv
(Vvoro − Vmin)kv−1 e−

Vvoro−Vmin
χ , (3)

with Vmin = kvvmin, a distribution that has been found in
many experimental and computational experiments [12,
13], (with kv ≈ 12 for monodisperse cells in the limit
state of isotropic compression [10]). This way, the aver-
age 〈Vvoro〉 and the variance σ2

V of that distribution can be
used to calculate the compactivity of the system χ as well
as the number of elementary cells per tessellation cell kv,

χ =
σ2

V

〈Vvoro〉 − Vmin
, kv =

(〈Vvoro〉 − Vmin)2

σ2
V

. (4)

Furthermore, Oquendo et. al [10] derived a state equation
between the compactivity and the packing fraction φ for
the system

χ = A
(

1
φ
−

Vmin

vgrain

)
. (5)

which is satisfied with A ≈ 0.04481d3 for the limit state
of isotropic compression and Vmin/vgrain ≈ 1.3250 for
monodisperse spherical packings[14, 15].

3 Force network ensemble

A second major approach to the statistical mechanics gran-
ular media is the Force Network Ensemble (FNE)[5–7],
which is based on the hyperstaticity of dense states, i.e.,
that the number of contacts per grain z is larger than the
one ziso necessary to solve the equilibrium and external
stress constraints uniquely and, therefore, there are mul-
tiple valid force networks ~f for the system. The number
of degrees of freedom for the contact force variables is
k f =

d f N
2 (〈z〉 − ziso), with d f = 1 (d f = d, the system’s

dimension) for frictionless (frictional) particles.
In the canonical ensemble under isotropic compres-

sion at pressure p (that is, when the stress tensor is σα β =

pδα β), each force network appears with a probability

P( ~f ) =
e−αp( ~f )

Z
, Z =

∫ ∞

0
dpΩ(p) exp(−αp), (6)

1We use Λ = 3√eχRCP ≈ 0.301d (from the Random Close Packing
(RCP) [10])

where α−1 is the angoricity [3] and Ω(p) is the number
of force networks fulfilling those constraints. Since Ω(p)
indicates the content of the solution space spanning k f di-
mensions and p can be considered as the typical diameter
of one dimension [5], then Ω(p) ∝ pk f , and the following
equation of state fulfills:

α〈p〉 = k f . (7)

The FNE has been widely studied by theoretical, ex-
perimental and computational works [16–18]. In a recent
Monte Carlo study of the FNE on a single grain at constant
angoricity, Cardenas et. al. [19] found that the pressure
per grain, calculated as the sum of the normal forces per
particle pi =

∑zi
j=1 |

~Fn
i j|, exhibits a k-gamma probability

distribution,

P(p) =
1

Γ(k)θk pk−1e−
p
θ , (8)

with

k =
〈p〉2

σ2
p
, θ =

σ2
p

〈p〉
= α−1, (9)

where k → k f for low angoricities (α−1 < 10−2), satis-
fying the equation of state (7). This result suggests that
the pressure can be considered as the sum of k f inde-
pendent force variables fi with exponential distribution
P( fi) = αe−α fi . Thus, the entropy for one force variable
will be S f

1 = 1 + ln
(
α−1

p0

)
, with p0 a reference pressure2,

and the total FNE entropy would be

S f
k f

= k f

[
1 + ln

(
α−1

p0

)]
. (10)

4 Our work

To study a possible connection between the pressure per
grain and the volume of the Voronoï cells in the limit
state of isotropic compression we performed DEM sim-
ulations with the software LIGGGHTS [20–22] on a 3D
cubic packing of 80000 monodisperse spheres. The con-
tact forces are Hertzian plus a dissipative term as in Ref.
[20], with time step ∆t = 10−5s. The limit configurations
are obtained through four sequential procedures : A ran-
dom insertion of particles inside a cubic box with initial
length Li = 0.3m to create a dilute granular media with
packing fraction φ ≈ 0.2, a particle grow for tgrow = 0.5s
until φ ≈ 0.3 in a process analogue to the Lubachevsky-
Stillinger’s algorithm [23], a relaxation for trelax = 0.2s un-
til the particles take fixed positions and their kinetic energy
is dissipated and an isotropic compression of the walls

for tcompress = 6s with inertial number I = ε̇d
√

ρm
Pwall

=

5 × 10−4 (where ε̇ is the deformation ratio, d the parti-
cle diameter, ρm the mass density of the system and Pwall
the external pressure applied on all walls). The simula-
tion was run five times: one for each external pressure
Pwall = 13.9, 27.8, 55.5, 111.1 and 222.2Pa, and the wall
velocity vwall was set to satisfy the low inertial number.

2We choose p0 = eα−1
iso from Eq. 10 with S f

k f
= 0, i.e. an isostatic

state.
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Table 1: Material and compression parameters used for the
simulation.

Name Symbol Value
Particle radius r 2.89 × 10−3m
Young modulus Y 5 × 106Pa
Poisson’s ratio ν 0.45
Restitution coefficient e 0.3
Friction coefficient µ 0.5
Particle mass density ρp 2.5 × 103kg/m3

Also, we kept track of the isotropic and deviatoric stress

scalars p =
σ1+σ2+σ3

3 and q =

√
(σ1−σ2)2+(σ2−σ3)2+(σ1−σ3)2

2

(with σ1,2,3 are the eigenvalues of the stress tensor 3) to
assure an anisotropy ratio q

p < 10−2 for the limit state. The
analysis was then performed on all particles at least three
diameters away from the walls, and excluding rattlers. All
other material properties are listed in Table 1.

Let us take Pwall = 55.5Pa as an example. The set
of all Voronoï cells follows a k-gamma distribution with
kv ≈ 14 and χ/d3 = 0.0146, as in Ref.[10]. Neverthe-
less, not all Voronoï cells are the same. When divided
into subsets by their number of faces, they still exhibit k-
gamma distributions, all with almost the same compactiv-
ity (χ/d3 ∼ 0.0085(4) for subsets with more than 1000
cells, which is different from the global one), but with dif-
ferent ks (Fig. 1, left). Indeed, the results show a lin-
ear relation between the number of elementary cells per
Voronoï cell kv and the number of faces s of such cell,
kv = 2.9(1)s − 19(2)4 (Fig. 1, right).

Figure 1: Distributions of Voronoï cell volumes classified
by their number of faces s. Solid lines represent the k-
gamma distribution with kv and χ calculated from Eq. (4)
while dotted lines are the least squares fitting to a k-gamma
function (left). Number of elementary cells per Voronoï
cell kv as a function of s (right).

In a similar manner, the pressures per grain follows a
k-gamma distribution with k = 1.78 and α−1 = 4.78×10−3

(Fig. 2, left). When classified by the number of contacts z,
they still show k-gammas with almost the same angoricity
(α−1 ∼ 0.0036(2) for subsets with more than 1000 grains,
which is different from the global one), but with different
ks, which in the limit of low angoricity should obey Eq.

3The granular stress tensor was computed from the microscopic in-
teractions as σα,β = 1

2V
∑

i j fi j,αri j,β where ~ri j is the vector joining the
centers of grains i and j and ~fi j is the interaction force between them.

4Values between parentheses are 1 sigma error bars

(7). We observe the linear relationship k f = 0.63(9)z −
0.5(3), independent of the pressure applied on the walls
on the range 13.9Pa < Pwall < 222Pa (Fig. 2, right).

Figure 2: Distributions of the pressure per particle p clas-
sified by the number of contacts z. Solid lines are the k-
gamma distributions with k f and α computed from Eq. (9),
while dotted lines are least squares fittings to a k-gamma
function (left). Number of elementary forces k f (circles)
and average pressure per grain 〈p〉 times the angoricity α−1

(squares) as functions of z (right).

The connection between both ensembles is established
by linking the number of faces s for the Voronoï cells and
the number of contacts z for the particles. The joint dis-
tribution of s and z is almost the same for all Pwall on
the established range (Fig. 3,left). Although a particle
with a given number of contacts can have a Voronoï cell
with different number of faces (and vice-versa), for every
z there is a preference for a given s. Indeed their aver-
ages follow linear relations (Fig. 3, right). We propose
s = −0.30(1)z + 15.9(9), where the negative sign implies
that adding contacts reduces the number of faces.

Figure 3: Distribution of grains according to the number of
faces of their Voronoï cell s and their number of contacts
z (left). Relation between the number of faces s of the
Voronoï cell and the average number of contacts 〈z〉 (right).

By assuming that pressure and volume are uncorre-
lated variables (a reasonable assumption for very rigid
spheres), the total entropy S Total will be the sum of those
for the volume and the force network ensembles (Eq.
(2,10)),

S Total

N
=

C
N

[
1 + ln

(
χ

Λ3

)]
+

k f

N

[
1 + ln

(
α−1

p0

)]
, (11)

where C/N = kv is the number of elementary cells per
Voronoï cell and k f /N = k′f is the number of force degrees
of freedom per particle. Using the linear expressions be-
fore, the parameters kv and k f can be written as function of
the number of contacts: kv = −Mvz + B and k f = M f z−D,

3
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with Mv = 0.87(8), B = 27(7), M f = 0.63(9)) and
D = 0.5(3). Then, the total entropy can be written as a
function of the coordination number z,

S Total

N
= (−Mvz+B)

[
1 + ln

(
χ

Λ3

)]
+(M f z−D)

[
1 + ln

(
α−1

p0

)]
.

(12)
The force entropy grows with the number of contacts,

while the volume entropy decreases; therefore, in a statis-
tical equilibrium state we could expect entropy to remain
almost constant (i.e. maximized) with the number of con-
tacts. Figure 4 (left) shows that this is indeed the case, with
a total variation around 3% for the five values of Pwall.

Figure 4: Entropy per grain as a function of the average
number of contacts of the sample, Eq. (13) (left). Relation
between the two terms in the proposed equation of state
(Eq. 14) (right). The slope in the linear fit is 2.94 ± 1.21.

Finally, maximizing the total entropy against the num-
ber of contacts z,

∂S Total/N
∂z

= M f

[
1 + ln

(
α−1

p0

)]
− Mv

[
1 + ln(

χ

Λ3 )
]

= 0,

(13)
gives an expression relating angoricity and compactivity,

α−1

p0
= e

Mv
M f
−1

(
χ

Λ3

)Mv/M f

, (14)

that is, an equation of state for a granular medium of rigid
monodisperse spheres under low pressure isotropic com-
pressions. Fig. 4 (right), shows that the logarithms of the
angoricities for the subsets classified by z and the loga-
rithms of the compactivities for the subsets classified by
s fulfill a linear relation, as expected from Eq. (14). The
positive slope of 2.94±1.21 is close enough to the expected
value Mv/M f = 1.38 to encourage us for developing more
research in the future.

5 Conclusions

Summarizing, this work proposes a procedure to join the
force network ensemble on a single grain and the volume
ensemble of the Voronoï cell around it for a monodis-
perse spherical granular medium in the limit of isotropic
compression, just by establishing an empirical relation be-
tween the number on contacts on the grain with the num-
ber of faces of the Voronoï cell. Using this relation we
express the total entropy of the system as a function of the
number of contacts, which is expected to be approximately

constant in equilibrium. From there we propose a state
equation between the average pressure per particle and the
packing fraction, to be verified in future works. The pro-
cedure constitutes a further step to reach the holy grail of
granular media, i.e. to develop a comprehensive statistical
theory of granular media joining the volume ensemble and
the force networks, clearing a way towards a theoretical
description of dense granular media in static equilibrium.
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