
Graph Variational Autoencoder for Detector Reconstruc-
tion and Fast Simulation in High-Energy Physics

Ali Hariri1,∗, Darya Dyachkova2, and Sergei Gleyzer3

1American University of Beirut
2Minerva Schools at KGI
3University of Alabama

Abstract. Accurate and fast simulation of particle physics processes is crucial
for the high-energy physics community. Simulating particle interactions with
the detector is both time consuming and computationally expensive. With its
proton-proton collision energy of 13 TeV, the Large Hadron Collider is uniquely
positioned to detect and measure the rare phenomena that can shape our knowl-
edge of new interactions. The High-Luminosity Large Hadron Collider (HL-
LHC) upgrade will put a significant strain on the computing infrastructure and
budget due to increased event rate and levels of pile-up. Simulation of high-
energy physics collisions needs to be significantly faster without sacrificing the
physics accuracy. Machine learning approaches can offer faster solutions, while
maintaining a high level of fidelity. We introduce a graph generative model that
provides effective reconstruction of LHC events on the level of calorimeter de-
posits and tracks, paving the way for full detector level fast simulation.

1 Introduction

Simulations of particle interactions are crucial for particle physics research. The Large
Hadron Collider is delivering the highest energy proton-proton collisions ever recorded in
the laboratory, permitting a detailed exploration of elementary particle physics. It is uniquely
positioned to detect and measure the rare phenomena that can shape our knowledge of new
interactions and possibly resolve the present tensions of the Standard Model. LHC experi-
ments have already observed the long-sought after Higgs boson [1, 2], and it is hoped that
they will further reveal evidence for new physics beyond the Standard Model.

After the next LHC run and the ensuing shutdown, the LHC will begin its ‘High-
Luminosity’ (HL-LHC) operations around 2027 [3], targeting a five-fold increase in yearly
data collection, with an additional ten years of operation. Advanced computational
paradigms, including advanced machine learning techniques and dedicated hardware that ac-
celerates their application for detector simulation and event reconstruction, will be necessary
to attain the main physics goals of the HL-LHC [4] due to significant challenges posed by
increased levels of pile-up and the rarity of sought-after signals.
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Probabilistically, the reconstruction of collision events is modeled using the equation:

p(r-particles|θ) =
∫

R(r-particles|particles)H(particles|partons)

×P(partons|θ) dparticles dpartons (1)

where P is the probability density of observing a set of reconstructed objects given a point in
the parameter space, H refers to the hadronization process where mapping from the parton to
the particle level occurs and R(particles) is the detector response [5]. The latter is estimated
using Monte Carlo-based full simulation or parametric methods. This poses a computational
bottleneck for current simulation frameworks that model collision events using Monte Carlo
methods. The current forward simulation models [6] are difficult to parallelize and do not
scale well with the rising computational complexity. Parametrized models such as [7] are
faster but suffer from a loss in fidelity compared to full simulation which limits their utility.

1.1 Machine Learning for Fast Simulation

Many useful applications for particle physics that emerged from the recent advances in deep
learning [4]. One of the actively researched topics is the potential of generative models for
simulating collision events. In [8], a combination of a Variational Autoencoder (VAE) and
a Generative Adversarial Network (GAN) is used to simulate electromagnetic showers in
calorimeters. Other studies focus on GANs for QCD Dijet events [9] and hadronic jets [10].

In this study, we make use of VAEs [11] and geometric deep learning [12] to learn a
compressed representation of the data to be used for reconstruction of high-energy physics
events. More specifically, we develop a Graph Variational Autoencoder to learn the represen-
tations of single jet events data in a high dimensional space and then reconstructing them in
an end-to-end fashion through an encoder and a decoder, setting the ground for future work
to embed such generative models into a full simulator. In contrast to existing methods, graph
representation learning can handle irregular grids with non-Euclidean geometry [13], encode
physics knowledge via graph construction [14] and introduce relational inductive bias into
data-driven learning systems [15]. In our study we use spatial graph convolutional layers
[16] to learn the properties of the graph-like structures and spectral clustering layers to com-
press these graphs into smaller, more representative nodes. Graph neural networks have been
recently applied to other applications in high-energy physics [17].

2 Data and Pre-Processing

For the study, we use a representative sample of top quark pair events generated with Pythia
6 and available on the CERN Open Data Portal [18]. The input data is processed by follow-
ing the recipe in [19]. The input data contains a total of 30000 samples, each containing 3
channels: Tracks, Electromagnetic Calorimeter (ECAL) and Hadronic Calorimeter (HCAL),
respectively, all of which are target channels for the purpose of this work. For HCAL and
ECAL information is consumed at the level of reconstructed hits. For Tracks the information
is contained at the level of the projected track to ECAL surface. To visualize the events in
different sub-detectors, we display them on a mesh with 85 x 85 segmentation (Fig. 1), shown
at ECAL resolutyion.

We pre-process the data by selecting the non-zero hit locations within the array, providing
their respective x and y locations as per the calorimeter segmentation. Afterwards, we con-
catenate the x,y locations with their corresponding reconstructed hit energy at that location.
At this stage, each sample has the shape Nx3 where N is the number of non-zero hits within
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Figure 1. The visualization of the energy deposits in ECAL and HCAL calorimeter layers for two
distinct ttbar events (top and bottom). The tracks layer shows the tracks projected to the ECAL surface.
The leftmost image is the combined one from all the three layers.

the detector. In the next section we show that N is also the number of nodes within one graph
representing a jet.

3 Graph Representation of Events

A graph is denoted by G = (V, E, A) where V is the set of vertices composing the graph, E the
set of edges connecting these vertices, and A being an N x N adjacency matrix describing the
relationship between the nodes, where N is the total number of nodes in the graph. Associated
with each vertex V is a set of features describing it. These are given in a feature vector
X ∈ RN×D with D being the number of features per node. After performing the convolution
operation on neighbor node attributes, this signal needs to be aggregated and propagated
k times in order to update the features of the node under study for the next iteration. A
hidden Graph Convolutional Network (GCN) is given by Hi = f (Hi−1, A) where Hi = N × Xi

represents the node features at iteration i and f is a propagation function that defines the output
based on the input. For the propagation function, rectified linear unit (ReLU) is the one most
commonly used, defined as f = max(0, x), x being the input [20]. The simplest form of the
propagation rule accounts for the node features by summing them prior to aggregation. This
method known as the sum rule is given by: hvi = AiX =

∑N
j=1 Ai jX j where hvi represents

features of node v at the ith iteration.
Jets in particle collisions are not characterized by such pre-defined topology. We map

particle showers at the level of the CMS detector into graphs by considering a single particle
hit to be a node within a larger graph whose interconnected components are the surrounding
hits. In other words, we consider particle hits within a detector to be interconnected nodes in
a graph. This mapping operation is done on the pre-processed image samples obtained from
the CMS open data, serving as an input to our model.

Therefore, each event is characterized by a set of nodes whose features include x-y lo-
cations in 2D space in addition to their energies. We use the k-nearest neighbours algorithm
in 2D space to connect the nodes, i.e each node is connected by an edge to k-nodes that are
closest in terms of Euclidean distance given by

√
(x − xi)2 + (y − yi)2 with xi and yi referring
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Figure 2. Model architecture of the Graph Variational Autoencoder showing GraphSAGE layers and
pooling blocks

to this node’s coordinates. To learn the graph properties of these showers we develop a Graph
VAE architecture whose encoder embeds the node features into latent space dimensions.

After defining the graph topology and node features, we also need to address the graph
embeddings. We use GraphSAGE [21], an inductive learning framework that assumes nodes
within the same neighbourhood to have similar embeddings and proceed by aggregating in-
formation from higher-level neighbourhoods. Hence, we use dense GraphSAGE layers in
a graph variational encoder-decoder model that learns to reconstruct graphs from a learned
compressed representation in latent space. The latter is obtained at the level of the encoder by
means of spectral clustering of the graph’s nodes with similar latent features. More specifi-
cally, the graph is compressed using the MinCut pooling technique inspired by [22]. Finally,
the decoder upsamples the feature and adjacency matrices as follows:

Xrec = S XPooled; Arec = S APooledS T (2)

where S is a learned cluster assignment matrix similar to the one defined in [22]. A pictorial
representation of our model is given in Figure 2.

In a nutshell, our GVAE model takes as input a set of pre-processed images from the
CMS Open Data release, maps them as interconnected graphs using the k-nearest neighbour
approach and learns their latent space representation for reconstruction purposes.

4 Results

Our Graph Variational Autoencoder was trained on a Tesla T4 GPU on Google Colab [23] to
reconstruct top quark-initiated jets. A clear visualization of our results is shown in Figure 3,
where the fully-simulated events are compared to their corresponding GVAE reconstruction
using the x-y coordinates of the hits on the one hand and the particle energies represented
in the farmost color bar on the other hand. Our results indicate a high-level of agreement in
2D hit distributions and their respective energy scales. Similarly, the Earth Mover Distance
metric [24] used to compute the cost of moving the predicted point clouds likewise indicates
good agreement (Figure 4) while accounting for the energy and distance differences between
real and reconstructed events. This metric represents the "work" that is needed to convert one
particle event ε into another ε′ by moving energy between particles i and j in the two events.
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Figure 3. Original simulated top quark initiated jet (top) compared to the GVAE-reconstructed jet
(bottom) in each of the three channels. The energy range is log-scaled for better visualization.

Figure 4. Earth Mover Distance distribution as described in Ref. [24]. Low values of EMD indicate
good agreement.

It is described by the following equation:

EMD(ε, ε′) = min{
fi, j
}
∑

i j

fi j
θi j

R
+
∣∣∣∣
∑

i

Ei −
∑

j

E′j
∣∣∣∣

fi j ≥ 0,
∑

j

fi j ≤ Ei,
∑

i

fi j ≤ E′j,
∑

i j

fi j = Emin

Finally, several trial runs showed an average inference time of 0.13088 seconds for GVAE
reconstruction on a batch size of 64, orders of magnitude below typical full reconstruction
times for simulation of top events, while maintaining a very high level of fidelity.
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4.1 Multi-GPU Scaling

We next investigate how the GVAE model scales on multiple GPU devices. We first profile
the code to monitor the process load taking place in CPUs and GPUs. To avoid a potential
data-loading bottleneck, we opted to generate batches of graphs on the spot in the CPU prior
to sending them to the training model on the GPU. This change has reduced the training
time by 50%. Having trained on a single Tesla V100 GPU as a baseline, we proceeded
by scaling the model using the Horovod library [25], a deep learning library for distributed
training of deep learning models supporting many frameworks such as PyTorch, TensorFlow
and MXNet. This framework facilitates distributed training across multiple GPUs using the
Message Passing Interface (MPI) and takes as input the size parameter referring to the number
of processes P in training, followed by the Rank parameter unique to process and numerated
from 0 to P-1. Finally, LocalRank indicates the unique process ID within each device (0 to
NGPUS ).

We train our GVAE model on a cluster using Volta V100 GPUs having 16 GB of RAM.
Following profiling and code optimization for enhanced CPU performance, we scale the train-
ing on multiple GPUs using the Horovod library. To get a baseline performance, we compare
the results to the training on a single GPU with a batch size of 32 for 100 iterations, i.e a total
of 3200 graph samples (Figure 6).

Horovod Weak Scaling on p GPUs with p={1,2,3,4} for 100 iterations on NVIDIA DGX V100  
 GPU Processes execution time (in seconds) for 3200 samples 

One Two Three Four 
Mean Execution  

Time (s) 69.34 85.48 94.96 101.54 

Stddev Execution  
Time (s) 3.05 1.85 2.26 1.00 

Speedup 1.00 1.62 2.19 2.73 
Parallelization  

efficiency 1.00 0.81 0.71 0.68 

 

 

 

 

 

 

 

 

 

Figure 5. Table showing scaling efficiency

Figure 6. Comparison plot of how our model scales to multiple GPUs
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Throughout scaling we notice an increase in the performance with an increase in the
GPU devices used. To calculate the resulting speedup from scaling, we take as reference the
Mean Execution Time (MET) resulting from training on one GPU. For NGPUs = 2, the mean
execution time is 85.48 seconds. Bearing in mind that we are training twice the amount of
data overall, we get MET per GPU = 42.74 seconds. The resulting speedup for NGPUs = 2 is
given by

METsingleGPU

MET perGPUusingNGPUs
=

69.34
42.74

= 1.62 (3)

Applying the same speedup calculation, going from 2 to 4 GPUs, we get speedups of 1.62,
2.19 and 2.73, respectively. Therefore, we conclude that our model scales well on multiple
GPUs using Horovod, which is useful for future work and similar graph generative models.
However, there is still some loss in scaling performance due to parallelization efficiency that
can be explained by an inefficient communication between the GPUs once parallel batch
training has been done. This issue can be overcome by programming the kernel directly.
Further optimization could be deferred to future work.

Additionally, we used NVIDIA’s Automatic Mixed Precision (AMP) library that enables
mixed precision training of deep learning models with support to distributed parallel training.
This approach has the potential to boost the speedup of model training by enabling the support
of FP16 operations throughout the model’s layers. This step offers several benefits such as
the reduction in required memory for FP16 as compared to 32-bit floating points, faster data
transfer and linear algebra operations with lower precision formats. Using multi-gpu scaling
methods allows us to additionally speed-up the performance during training and inference,
something that is very challenging to accomplish with present simulation methods.

5 Conclusion

In this proof-of-concept work we shed light on the potential of graph-based architectures for
learning the representation of high-energy collision events. Graph neural networks tackle
the issue of data sparsity in particle detectors by allowing the model to directly learn from
the hits deposited in the detector. Through spatial convolution our model was able to learn
the interactions between hits in the detector and we sequentially compressed it by means of
mincut pooling to preserve the most representative nodes in latent space. Finally, a trained
decoder can upsample the compressed vectors to the original reconstruction, leading to a
proof-of-concept simulator. We additionally benchmarked our model on single and multiple
gpus, demonstrating low latency times and efficient multi-gpu scaling performance.
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