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Abstract. We investigate the Abelian dual Meissner e↵ect due to violation of
the non-Abelian Bianchi identity in S U(3) gauge thoery without gauge fixing.
To decide the vacuum type, we evaluate the Ginzburg-Landau parameter from
the spatial distribution of color electric fields and squared monopole density.
Although the study is done only on 24 (40)3 ⇥ 4 lattice at β = 5.6, the S U(3)
vacuum is found to be of the type 1 near the border of type 1 and type 2. We
also confirm the dual Ampère’s law directly.

1 Introduction

Quark confinement mechanism is one of the most important problem in particle physics [1].
A dual superconducting picture [2, 3] as an idea of color confinement mechanism, has been
investigated for many years. In this picture, quarks are confined by condensation of QCD
monopoles. Although the idea of the dual superconducting picture is very interesting in
understanding the mechanism of confinement, in constract to SUSY QCD [4] or Georgi-
Glashow model [5, 6] with scalar fields, it is not straightforward to define monopoles in
QCD. Intoduction of a partial gauge fixing [7] projecting QCD to its maximal Abelian torus
group, is one interesting idea to define monopoles in QCD but there are infinte ways of such
gauge fixings. Numerically the maximally Abelian gauge [8, 9], which is one of the Abelian
projections, seems to support the conjecture [10, 11].

Recently one of the authors (T.S.) found that the violation of the non-Abelian Bianchi
identity(VNABI) is equal to Abelian-like monopoles in the continuum theory [12]. This idea
is similar to the Dirac monopole [13] in U(1) quantum electrodynamics. It is confirmed that
VNABI has the continuum limit in pure S U(2) gauge theory [14, 15]. Therefore showing the
continuum limit of VNABI in S U(3) gauge theory is very important. Recent studies about
the monopole dominance in S U(3) are presented in another report [16] in this conference.
Here, we discuss the Abelian dual Meissner e↵ect due to VNABI in S U(3) gauge theory.
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Evaluating the spatial distribution of color electric fields and monopoles has been inves-
tigated in S U(2) gauge theory. Especially, in Ref. [17], they investigated the dual Meissner
e↵ect in S U(2) gauge theory without any gauge fixing. They confirmed the vacuum type is
near the border between type1 and type2 and also the dual Ampère’s law is satisfied. The
Abelian monopole current squeezes the Abelian color electric field as a solenoidal current.
These results agree with the dual superconducting picture. Our purpose of this work is to
confirm the dual Meissner e↵ect due to VNABI and to determine the vacuum type in S U(3).
In this report, first we explain the lattice definition of monopoles due to VNABI briefly and
second show the results of the Abelian dual Meissner e↵ect. Especially, we show the results
of the Ginzburg-Landau parameter (GL) and the dual Ampère’s law, although at one gauge
coupling constant in the present stage.

2 VNABI
We explain the definiton of monopoles due to VNABI in this section briefly. Details of the
derivation are shown in Ref.[16].

If gauge fields have a line singularity in the continuum QCD, the non-Abelian Bianchi
identiry is violated. Then the violation (VNABI) corresponds to Abelian-like monopoles. In
the case of S U(3) gauge theory, VNABI is regarded as eight Abelian-like monopoles in the
continuum QCD. The VNABI can be written as

D⌫G⇤µ⌫ = @⌫ f ⇤µ⌫, (1)

where Dµ = @µ − igAµ is a covariant derivative, Gµ⌫ is a non-Abelian field strength and fµ⌫
is defined as fµ⌫ = @µA⌫ − @⌫Aµ = (@µAa

⌫ − @⌫Aa
µ)λ

a/2. In the case of S U(3), λa are the
Gell-Mann matrices.

In S U(3) QCD on lattice, it is not straightforward to define the monopole. To extract
Abelian link fields for all eight colors separately from non-Abelian gauge field matrix is
not simple, since in S U(3) the non-Abelian gauge field is not expanded by the Lie-Algebra
elements in a simple way as in S U(2). We use the following method to define the Abelian
link field by maximizing the following overlap quantity by taking a functional derivative with
respect to an Abelian link field ✓aµ(s):

RA =
X

s,µ

Tr
⇣
ei✓aµ(s)λa

U†µ(s)
⌘
, (2)

This choice in S U(2) leads us to the same Abelian link fields adopted in Ref. [17].
For example, we get from the maximization condition of (2) an Abelian link field ✓1(s, µ)

corresponding to σ1 (S U(2)) and λ1 (S U(3)) as

✓1(s, µ) = tan−1 U1(s, µ)
U0(s, µ)

, (SU2 : U(s, µ) = U0(s, µ) + i~σ · ~U(s, µ))

= tan−1 Im(U12(s, µ) + U21(s, µ))
Re(U11(s, µ) + U22(s, µ))

, (SU3)

Once Abelian link variables are fixed, we can extract Abelian, monopole and photon parts
from the Abelian plaquette variable as follows:

✓aµ⌫(s) = ✓̄aµ⌫(s) + 2⇡na
µ⌫(s) (|✓̄aµ⌫| < ⇡), (3)

where na
µ⌫(s) is an integer corresponding to the number of the Dirac string. Then an Abelian

monopole current is defined by

ka
µ(s) = −(1/2)✏µ↵βγ@↵✓̄aβγ(s + µ̂) = (1/2)✏µ↵βγ@↵na

βγ(s + µ̂). (4)

This definition (4) satisfies the Abelian conservation condition and takes an integer value
which corresponds to the magnetic charge obeying the Dirac quantization condition [18].
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This definition (4) satisfies the Abelian conservation condition and takes an integer value
which corresponds to the magnetic charge obeying the Dirac quantization condition [18].

3 The Abelian dual Meissner effect in S U(3)
3.1 Simulation details of the flux-tube profile

In this section, we show the results with respect to the Abelian dual Meissner e↵ect. In the
previous work [17] studying the spatial distribution of color electric fields and monopole cur-
rents, they used the connected correlations between a non-Abelian Wilson loop and Abelian
operators in S U(2) gauge theory without gauge fixing. We apply the same method to S U(3)
gauge theory without gauge fixing. Here we employ the standard Wilson action on the
243 (403) ⇥ 4 lattice with the coupling constant β = 5.6. We consider a finite tempera-
ture system at T = 0.8Tc. To improve the signal-to-noise ratio, the APE smearing is applied
to the spatial links and the hypercubic blocking is applied to the temporal links. We introduce
random gauge transformations to improve the signal to noise ratios of the data concerning the
Abelian operators.

To measure the flux-tube profiles, we consider a connected correlation functions as done
in [19, 20]:

⇢conn(O(r)) =

D
Tr(P(0)LO(r)L†)TrP†(d)

E

⌦
TrP(0)TrP†(d)

↵ − 1
3

D
TrP(0)TrP†(d)TrO(r)

E

⌦
TrP(0)TrP†(d)

↵ , (5)

where P denotes a non-Abelian Polyakov loop, L indicates a Schwinger line, r is a distance
from a flux-tube and d is a distance between Polyakov loops. We use the cylindrical coordi-
nate (r, φ, z) to parametrize the q-q̄ system as shown in Fig 1.

d

Figure 1. The definition of the cylindrical coordinate (r, φ, z) along the q-q̄ axis. The d corresponds to
the distance between Polyakov loops.

3.2 The spatial distribution of color electric fields

First of all, we show the results of Abelian color electric fields using an Abelian gauge field
✓1(s, µ). To evaluate the Abelian color electric field, we adopt the Abelian plaquette as an
operator O(r). We calculate a penetration length λ from the Abelian color electric fields for
d = 3, 4, 5, 6 at β = 5.6 and check the d dependence of λ. To improve the accuracy of
the fitting, we evaluate O(r) at both on-axis and o↵-axis distances. As a result, we find the
Abelian color electric fields EA

z alone are squeezed as in Fig 2. We fit these results to a fitting
function,

f (r) = c1exp(−r/λ) + c0. (6)

The parameter λ corresponds to the penetration length. We summarize the values of parame-
ters in Table 1. We find the values of the penetration length are almost the same.
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Figure 2. The Abelian color electric field with d = 5 at β = 5.6 on 243 ⇥ 4 lattices.

Table 1. The penetration length λ at β = 5.6 on 243 ⇥ 4 lattices.

d λ/a c1 c0 χ2/Nd f

3 0.91(1) 0.0100(2) -0.000002(8) 1.31628
4 1.10(6) 0.0077(4) -0.00005(4) 0.972703
5 1.09(8) 0.0068(6) -0.00001(4) 0.995759
6 1.1(1) 0.0055(8) -0.00008(7) 0.869692

3.3 The spatial distribution of monopole currents

Next we show the result of the spatial distribution of Abelian-like monopole currents. We
define the Abelian-like monopole currents on the lattice as in Eq. (4). In this study we evaluate
the connected correlation (5) between k1 and the two non-Abelian Polayakov loops. We use
random gauge transformations to evaluate this correlation. As a result, we find the spatial
distribution of monopole currents around the flux-tube at β = 5.6. Only the monopole current
in the azimuthal direction, k1

φ, shows the correlation with the two non-Abelian Polyakov
loops.
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Figure 3. The monopole current at β = 5.6 on 403 ⇥ 4 lattices.
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3.4 The dual Ampère’s law

In previous S U(2) researches [17], they investigated the dual Ampère’s law to see what
squeezes the color-electric field. In the case of S U(2) gauge theory without gauge fixings,
they confirmed the dual Ampère’s law and the monopole currents squeeze the color-electric
fields. In this section we show the results of the dual Ampère’s law in the case of S U(3)
gauge theory. The definition of monopole currents gives us the following relation,

(rotEa)φ = @tBa
φ + 2⇡ka

φ, (7)

where index a is a color index.
As a results, we confirm that there is no signal of the magnetic displacement current @tBa

φ

around the flux-tube for d = 3 at β = 5.6 as shown in Fig. 4. It suggests that the Abelian-like
monopole current squeezes the Abelian color electric field as a solenoidal current in S U(3)
gauge theory without gauge fixing, although more data for larger d are necessary.
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Figure 4. The dual Ampère’s law at β = 5.6 on 403 ⇥ 4 lattices.

3.5 The vacuum type in S U(3) gauge theory without gauge fixing

Finally, we evaluate the Ginzburg-Landau parameter, which characterizes the type of the
(dual) superconducting vacuum. In the previous result [17], they found that the vacuum type
is near the border between type 1 and type 2 dual superconductors by using the S U(2) gauge
theory without gauge fixing. We apply the same method to S U(3) gauge theory.

To evaluate the coherence length, we measure the correlation between the squared
monopole density and two non-Abelian Polyakov loops by using the disconnected correlation
function [17, 21],

D
k2(r)
E

qq̄
=

D
TrP(0)TrP†(d)

P
µ,a ka

µ(r)ka
µ(r)
E

⌦
TrP(0)TrP†(d)

↵ −
*X

µ,a

ka
µ(r)ka

µ(r)
+
. (8)

We fit the profiles to the function,

g(r) = c01exp
0
BBBB@−
p

2r
⇠

1
CCCCA + c00, (9)
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where the parameter ⇠ corresponds to the coherence length. We plot the profiles of
D
k2(r)
E

qq̄
in Fig 5. As a result, we could evaluate the coherence length ⇠ for d = 3, 4, 5, 6 at β = 5.6 and
find almost the same values of ⇠/

p
2 for each d as shown in Table 2. Using these parameters

λ and ⇠, we could evaluate the Ginzburg-Landau parameter. The GL parameter  = λ/⇠ can
be defined as the ratio of the penetration length and the coherence length. If

p
2 < 1, the

vacuum type is of the type 1 and if
p

2 > 1, the vacuum is of the type 2. We show the
GL parameters in S U(3) gauge theory in Table 3. We find that the vacuum is of the type 1
near the border between type 1 and type 2, although the study is done at one gauge coupling
constant β = 5.6. This is the first result of the vacuum type in pure S U(3) gauge theory
without gauge fixing, although di↵erent β data are necessary to show the continuum limit.
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Figure 5. The squared monopole density with d = 5 at β = 5.6 on 243 ⇥ 4 lattices.

Table 2. The coherence length ⇠/
p

2 at β = 5.6 on 243 ⇥ 4 lattices.

d ⇠/
p

2a c01 c00 χ2/Nd f

3 1.04(6) -0.050(3) 0.0001(2) 0.997362
4 1.17(7) -0.052(3) -0.0003(2) 1.01499
5 1.3(1) -0.047(3) -0.0006(3) 0.99758
6 1.1(1) -0.052(8) -0.0013(5) 1.12869

Table 3. The Ginzburg-Landau parameters at β = 5.6 on 243 ⇥ 4 lattice.

d
p

2
3 0.87(5)
4 0.93(7)
5 0.83(9)
6 0.9(2)
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