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Abstract. We present a novel relativistic density-functional approach to mod-
eling quark matter with a mechanism to mimic confinement. The quasiparticle
treatment of quarks provides their suppression due to large quark selfenergy
already at the mean-field level. We demonstrate that our approach is equiva-
lent to a chiral quark model with medium-dependent couplings. The dynamical
restoration of the chiral symmetry is ensured by construction of the density
functional. Beyond the mean field, quark correlations in the pseudoscalar chan-
nel are described within the Gaussian approximation. This explicitly introduces
pionic states into the model. Their contribution to the thermodynamic poten-
tial is analyzed within the Beth–Uhlenbeck framework. The modification of
the meson mass spectrum in the vicinity of thee (de)confinement transition is
interpreted as the Mott transition. Supplemented with the vector repulsion and
diquark pairing the model is applied to construct a hybrid quark-hadron EoS
of cold compact-star matter. We study the connection of such a hybrid EoS
with the stellar mass-radius relation and tidal deformability. The model results
are compared to various observational constraints including the NICER radius
measurement of PSR J0740+6620 and the tidal deformability constraint from
GW170817. The model is shown to be consistent with the constraints, still al-
lowing for further improvement by adjusting the vector repulsion and diquark
pairing couplings.

1 Introduction

A principal element of unified description of strongly interacting matter within e↵ective theo-
ries is the hadronization of chiral quark models and the incorporation of a confinement mech-
anism into them, manifesting the switching between hadronic and quark degrees of freedom.
The confining aspect of quark matter can be modeled by Cornell-type potentials. Within
this picture deconfinement of colored degrees of freedom is associated with a decrease of
the tension of the string connecting colored constituents and causing a correlation between
them. Within the string-flip model (SFM), the energy of such a correlation is related to the
string length distribution [1, 2]. The average string length is related to the average separation
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between quarks. This separation is connected to the quark number density which, in turn,
controls the quark mean-field self-energy. This idea was utilized in Ref. [3] in order to de-
velop a density functional approach incorporating the confining aspect of quark matter via
the divergence of the quark self-energy at vanishing number density of quarks.

In this work we do the next step and formulate the SFM-inspired density functional ap-
proach in a chirally symmetric way. This leads to the appearance of both scalar and pseu-
doscalar modes in the model. The pseudoscalar mode is most important for the phenomenol-
ogy of strongly interacting matter in the confined phase since it represents the Goldstone
bosons of spontaneously broken chiral symmetry. We treat this pseudoscalar mode beyond
the mean-field approach within the Gaussian approximation. In the two-flavor case this intro-
duces the pion degrees of freedom and in combination with the proposed phenomenological
confinement mechanism of quarks in the chirally broken phase it provides a quark-hadron
duality within our approach.

Another important and new aspect of this study is the introduction of the diquark pair-
ing channels into the density functional approach. At sufficiently high densities and low
temperatures the interaction in these channels causes the formation of a two-flavour color-
superconducting phase of quark matter (2SC). We study the thermodynamics this 2SC phase
of cold quark matter and derive its equation of state (EoS) within the mean-field approxima-
tion.

The recent analysis of observational data on the pulsar PSR J0740+6620 [4, 5] and the
binary neutron star (NS) merger GW170817 [6] established challenging constraints on the
mass-radius diagram of NS. Fulfilling these constraints requires the EoS of stellar matter to
exhibit a significant softening in the density range typical for the intermediate-mass NS with
a further sti↵ening at larger densities typical for NS with masses about two times the solar
mass. Such a behavior is very unlikely for the scenario of purely hadronic stellar matter since
the corresponding EoS consistent with the two solar mass constraint on the NS maximum
mass are sti↵ at all densities. On the other hand, a first order phase transition from hadronic
to quark matter can soften the stellar matter EoS in the intermediate density region. Therefore,
we apply our EoS of cold color superconducting quark matter to model NS with quark cores
within the framework of a hybrid quark-hadron EoS.

In the next section, we briefly describe the density functional approach, while sections 3
and 4 are devoted to the cases of zero chemical potential and zero temperature, respectively.
The conclusions are given in section 5.

2 Density functional approach

We consider the case of two quark flavors labeled by the index f = u, d and represented by the
color-flavor-Dirac spinor q = (u, d)T . Their masses and chemical potentials enter the matrices
m̂ = diag(mu,md) and µ̂ = diag(µu, µd), respectively. The latter includes µ f =

µB
3 + QfµQ

given in terms of the baryon (µB) and electric (µQ) charge chemical potentials, and the electric
charge of quarks Q f . Our model accounts for the chirally symmetric interaction in scalar and
pseudoscalar channels represented by the density functional U discussed below, as well as
the vector and diquark pairing channels important for the astrophysical applications [7]. The
Lagrangian is

L = q(i/@ − m̂)q −U −GV (qγµq)2 +GD(qiγ5⌧2λAqc)(qciγ5⌧2λAq). (1)

Here GV and GD are couplings in vector and diquark channels, respectively, qc = iγ2γ0qT

is the charge conjugate of the quark fields and the color index in the last term is implicitly
summed over A = 2, 5, 7. Chiral symmetry of U is provided by its dependence on the argu-
ment (qq)2 + (qiγ5~⌧q)2. Following Ref. [3] we expand this potential around the mean field
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expectation values hqqi and hqiγ5~⌧qi = 0. Below all the quantities evaluated at these expec-
tation values are denoted by the subscript index “MF”. In this study we use the expansion up
to the second order terms, which accounts for the one-loop mesonic correlations of quarks,
while the expansion up to the first order terms represents the mean-field approximation. Thus,

U(2) = UMF + (qq − hqqi)⌃MF −GS (qq − hqqi)2 −GPS (qiγ5~⌧q)2. (2)

Here the mean-field part of the quark self-energy ⌃MF and the medium-dependent e↵ective
couplings in the scalar GS and pseudoscalar GPS channels are defined as

⌃MF =
@UMF

@hqqi , GS = −
1
2
@2UMF

@hqqi2 , GPS = −
1
6
@2UMF

@hqiγ5~⌧qi2
. (3)

The Lagrangian with the second-order-expanded density functional L(2) = LU=0 − U(2)

is quadratic in all quark bilinears. This is equivalent to current-current quark interactions
representing a chiral model of the NJL type [7–14] but with medium dependent couplings.

The next step is to bosonize the present model by means of the Hubbard-Stratonovich
transformation (see, e.g., Ref. [8] for details). This introduces collective fields σ, ~⇡, !µ and
∆A, representing scalar, pseudoscalar, vector and diquark modes coupled to qq−hqqi, qiγ5~⌧q,
qγµq and qiγ5⌧2λAq, respectively. They enter the bosonized Lagrangian as

Lbos + q+µ̂q = QS−1Q −UMF + hqqi⌃MF + σhqqi − σ
2

4GS
− ~⇡2

4GPS
+
!µ!

µ

4GV
−
∆⇤A∆A

4GD
. (4)

It is written in terms of the Nambu-Gorkov bispinor QT = 1p
2
(q qc) and the propagator

S−1 =

 
S −1
+ − σ − iγ5~⌧ · ~⇡ i∆Aγ5⌧2λA

i∆⇤Aγ5⌧2λA S −1
− − σ − iγ5~⌧

T · ~⇡

!
(5)

with S −1
± = i/@ ± /! − m⇤ ± γ0µ̂ and the e↵ective quark mass m⇤f = mf + ⌃MF . The quark

fields enter Eq. (5) quadratically and therefore can be integrated out leading to the e↵ective
mesonic Lagrangian

Le f f =
Tr ln(βS−1)

2βV
−UMF + hqqi⌃MF + σhqqi + σ

2

4GS
+
~⇡2

4GPS
− !µ!

µ

4GV
+
∆⇤A∆A

4GD
, (6)

where β = 1
T is the inverse temperature and V is the system volume.

Within our approach the quark confinement is mimicked by a rapid growth of quark self-
energy ⌃ in the confining region. In agreement with the SFM argument, we assume ⌃ to
be inversely proportional to the mean separation between quarks [1, 2], i.e. ⌃ ⇠ (q+q)−

1
3

or, equivalently, U ⇠ (q+q)
2
3 . The proportionality coefficients in these relations are related

to the tension of the confining string. Using hqiγ5~⌧qi = 0 and the approximate relation
hqqi ' hqqi0 + hq+qi valid at low T and µ, we parametrize the chirally symmetric interaction
potential as

U = D0

h
(1 + ↵)hqqi20 − (qq)2 − (qiγ5~⌧q)2

i 1
3 , (7)

where hqqi0 is the vacuum value of the chiral condensate and the coupling constant D0 has
the meaning of the confining string tension. The constant parameter ↵ controls the behav-
ior of the e↵ective quark mass. The mean-field self-energy ⌃MF vanishes for ↵ ! 1, thus
making m̂⇤ = m̂. For ↵ = 0 this self-energy diverges for hqqi = hqqi0 leading to an absolute
“confinement” of quarks at low T and µ. Small positive values of this parameter provide
sufficient suppression of quarks in the confining region. The adopted parameterization of
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U provides a NJL-like expression for the e↵ective mass m̂⇤ = m̂ − 2GPS hqqi. Moreover,
replacing the SFM power ” 1

3 ” in Eq. (7) by unity we bring L(2) to the NJL model form [9]
up to an insignificant constant term. Thus, the present model can be considered as a gen-
eralization of the NJL model to the case of density dependent couplings. At the same time
GS , GPS in the general case due to the expansion of U around the mean-field solution,
which is known to break the chiral symmetry. However, these couplings saturate to the same

value G1 =
D0
3 (1 + ↵)−

2
3 hqqi−

4
3

0 , when chiral symmetry gets dynamically restored for vanish-
ing hqqi.

We fit the vacuum values of the chiral condensate hqqi0 = − 2(251 MeV)3, pion mass
M⇡ = 140 MeV, pion decay constant F⇡ = 90 MeV, and the mean-field value of the pseu-
docritical temperature Tc = 170 MeV by choosing the current quark mass mu = md = m =
4.9 MeV, momentum cuto↵ ⇤ = 563 MeV, ↵ = 0.844, and D0⇤

−2 = 1.058. Vector and
diquark couplings, parameterized by ⌘V ⌘ GV

G1
and ⌘D ⌘ GD

G1
, are treated as free parameters.

Below the pairs of numbers corresponding to these scaled couplings are used in order to label
the model parameterizations considered at finite chemical potentials. For example, (0.2, 1.5)
stands for a model with ⌘V = 0.2 and ⌘D = 1.5.

3 Quark-hadron matter at zero chemical potential

In this regime vector and diquark fields have zero expectation values at the mean-field level.
On the other hand, quark correlations in the pseudoscalar channel are the most important
beyond mean-field. We limit the present consideration to these correlations only. For this
we set σ = !µ = ∆A = 0. Note, that σ = 0 within the mean-field approximation since the
expansion (2) is already performed around the corresponding solution. Thus, the e↵ective
Lagrangian becomes

Le f f =
Tr ln

⇣
β(S −1

0 + ⌃⇡)
⌘

βV
−UMF + hqqi⌃MF +

~⇡2

4GPS
(8)

with S −1
0 = i/@−m⇤ and ⌃⇡ = −iγ5~⌧ ·~⇡ being the quark propagator in the quasiparticle approx-

imation and self-energy caused by the pseudoscalar correlations. We treat these correlations
within the Gaussian approximation (see e.g. Ref. [8] for details). For this we expand the trace
of the logarithm in Eq. (8) up to the second order in ⌃⇡. The zeroth order term contributes to
the mean-field thermodynamic potential

⌦MF = −12
Z

dk
(2⇡)3

⇥
✏ − 2T ln(1 − f )

⇤
+UMF − hqqi⌃MF , (9)

where ✏ =
p

k2 + m⇤2 and f = [eβ✏ + 1]−1 are the single particle energy and distribution
function of quarks. The first order term vanishes due to the tracelessness of the Pauli matrices,
while the quadratic term yields the one-loop polarization operator of pions with the four
momentum p,

⇧⇡ = −
Tr(iγ5S0)2

βV
= −hqqi

m⇤
+ 12p2

Z
dk

(2⇡)3

2 f − 1
✏(p2 − 4✏2)

. (10)

The poles of the propagator D−1
⇡ =

1
2GPS
− ⇧⇡ define the dispersion relation of the pseu-

doscalar mode, which at zero momentum gives the pion mass M⇡. The present model being
a generalization of the NJL one provides validity of the Gell-Mann-Oakes-Renner relation
M2
⇡F

2
⇡ = −mhqqi with the pion decay constant

F2
⇡ = 12m⇤(m⇤ − m)

Z
dk

(2⇡)3

2 f − 1
✏(M2

⇡ − 4✏2)
. (11)
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Figure 1. Left panel: temperature dependence of the pion mass M⇡ (blue dashed curve) compared to
the two quark decay threshold 2m⇤ (red solid curve). Right panel: temperature dependence of the scaled
pressure of quark-pion system (thick solid magenta curve) compared to partial contributions of quarks
(thin solid red curve), pions (blue dashed curve) and noninteracting pions with mass M⇡ = 140 MeV
(green dotted curve).

The temperature dependence of M⇡ is shown in the left panel of Fig. 1. At low T the pion
mass remains almost constant and is significantly smaller than the two quark decay threshold
2m⇤. The increase of temperature leads to a rapid decrease of the e↵ective quark mass around
the pseudocritical temperature. Above this temperature M⇡ > 2m⇤ and the pion is not a bound
state but a resonance. Above a certain temperature the real part of D⇡ does not have zeros,
which terminates the pion mass curve.

The polar representation of D⇡ = |D⇡|eiδ⇡ defines the phase shift of pions δ⇡. It gives a
direct access to the spectral function of pions ⇢⇡ = 1

⇡
@δ⇡
@p0

. On the other hand, the field ~⇡ enters

Le f f quadratically through the term ~⇡D⇡~⇡
2 . By integrating over the fields ~⇡ we arrive to the

thermodynamic potential

⌦ = ⌦MF −
3Tr ln(β2D⇡)

2βV
= ⌦MF + 3T

Z
dp

(2⇡)3

Z
dp0

⇡
ln(1 − eβp0 )

@δ⇡
@p0
, (12)

where in the second step the pion contribution is given by the Beth-Uhlenbeck formula. The
extremum of ⌦ with respect to hqqi defines the chiral condensate. The system pressure can
be found as p = −⌦ + ⌦0, where the constant shift of energy ⌦0 is introduced in order to
ensure p = 0 in the vacuum. The right panel of Fig. 1 shows the total pressure as a function
of temperature, compared to partial contributions of quarks and pions. At low T the pressure
of pions dominates the total one and is very close to the pressure of an ideal gas of particles
with the mass M⇡ = 140 MeV. At T ' Tc the quark pressure exhibits a fast growth while
the pion pressure decreases due to the Mott dissociation. At high T quarks dominate the
thermodynamics of the system.

4 Color superconducting quark matter at zero temperature

At zero temperature the beyond-mean-field bosonic correlations of quarks can be neglected.
Therefore, in this section we treat the model within the mean-field approximation. In this case
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Figure 2. Left panel: mass-radius diagram calculated for the hybrid quark-hadron EoS discussed in
the text (colored curves) and purely hadronic DD2npY - T EoS. Empty circle on the hadronic curve
indicates the hyperon onset. The astrophysical constraints depicted by the colored bends and shaded
areas are discussed in the text. Right panel: Tidal deformabilities of two components of the NS-NS
merger with the chirp mass M = 1.188 M�. Colored filled circles represent the configurations with
equal masses of two components M1 = M2 = 1.3646 M�. Dark and light green shaded ares represent
the regions falling into the 50 % and 90 % confidence levels.

all the fields introduced in Eq. (5) are set to some constant values. For scalar and pseudoscalar
fields σ = ~⇡ = 0. By a proper Lorentz transformation only the zeroth component of the vector
field attains a finite value !, which is absorbed into the e↵ective chemical potential of quarks
µ⇤f = µ f + !. Furthermore, there exists a global gauge transformation, which makes ∆2
the only non-vanishing diquark field. Only its absolute value ∆ = |h∆2i| = |h∆⇤2i| enters the
thermodynamic potential

⌦ = −Tr ln(βS−1)
2βV

+UMF − hqqi⌃MF −
!2

4GV
+
∆2

4GD
. (13)

Solving the trace of the logarithm of the inverse Nambu-Gorkov propagator is a technically
demanding but straightforward procedure exhaustively described in the literature (see e.g.
Refs. [7, 8]). We omit it for brevity the description of our approach. Since working within
the mean-field approximation, we require chiral condensate, vector and diquark fields to min-
imize ⌦. This gives us a set of three coupled equations to be solved with respect to hqqi, !
and ∆. Having the solutions found, we obtain pressure, baryonic charge and energy density
using standard thermodynamic identities as p = −⌦ + ⌦0, nB =

@p
@µB

and " = µBnB − p,
respectively.

The equation for the diquark pairing gap has two solutions. The trivial one ∆ = 0 exists
at any value of the chemical potential, while ∆ , 0 appears at the 2SC phase onset. It occurs
when two solutions coincide. The condition @2⌦

@∆2

∣∣∣
∆=0= 0 should be solved with respect to

the baryonic chemical potential in order to find its critical value µc
B corresponding to the

2SC phase onset. Below µc
B quark matter exists in a normal phase, while above it color

superconductivity is energetically favorable. This critical value decreases with growing ⌘D

since a stronger diquark pairing leads to earlier onset of the 2SC phase. The requirement of
the absence of color superconductivity in the vacuum sets an upper limit constraint on the
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Figure 2. Left panel: mass-radius diagram calculated for the hybrid quark-hadron EoS discussed in
the text (colored curves) and purely hadronic DD2npY - T EoS. Empty circle on the hadronic curve
indicates the hyperon onset. The astrophysical constraints depicted by the colored bends and shaded
areas are discussed in the text. Right panel: Tidal deformabilities of two components of the NS-NS
merger with the chirp mass M = 1.188 M�. Colored filled circles represent the configurations with
equal masses of two components M1 = M2 = 1.3646 M�. Dark and light green shaded ares represent
the regions falling into the 50 % and 90 % confidence levels.

all the fields introduced in Eq. (5) are set to some constant values. For scalar and pseudoscalar
fields σ = ~⇡ = 0. By a proper Lorentz transformation only the zeroth component of the vector
field attains a finite value !, which is absorbed into the e↵ective chemical potential of quarks
µ⇤f = µ f + !. Furthermore, there exists a global gauge transformation, which makes ∆2
the only non-vanishing diquark field. Only its absolute value ∆ = |h∆2i| = |h∆⇤2i| enters the
thermodynamic potential

⌦ = −Tr ln(βS−1)
2βV

+UMF − hqqi⌃MF −
!2

4GV
+
∆2

4GD
. (13)

Solving the trace of the logarithm of the inverse Nambu-Gorkov propagator is a technically
demanding but straightforward procedure exhaustively described in the literature (see e.g.
Refs. [7, 8]). We omit it for brevity the description of our approach. Since working within
the mean-field approximation, we require chiral condensate, vector and diquark fields to min-
imize ⌦. This gives us a set of three coupled equations to be solved with respect to hqqi, !
and ∆. Having the solutions found, we obtain pressure, baryonic charge and energy density
using standard thermodynamic identities as p = −⌦ + ⌦0, nB =

@p
@µB

and " = µBnB − p,
respectively.

The equation for the diquark pairing gap has two solutions. The trivial one ∆ = 0 exists
at any value of the chemical potential, while ∆ , 0 appears at the 2SC phase onset. It occurs
when two solutions coincide. The condition @2⌦

@∆2

∣∣∣
∆=0= 0 should be solved with respect to

the baryonic chemical potential in order to find its critical value µc
B corresponding to the

2SC phase onset. Below µc
B quark matter exists in a normal phase, while above it color

superconductivity is energetically favorable. This critical value decreases with growing ⌘D

since a stronger diquark pairing leads to earlier onset of the 2SC phase. The requirement of
the absence of color superconductivity in the vacuum sets an upper limit constraint on the

diquark coupling ⌘D < ⌘
⇤
D. This ⌘⇤D can be found from the condition @

2⌦
@∆2

∣∣∣
∆=µB=0= 0 combined

with the vacuum mas gap equation. Thus

⌘⇤D =
3
2

m⇤

m⇤ − m
GPS

G1
= 2.54, (14)

which is about 70 % larger than the corresponding NJL value [14]. This di↵erence is caused
by the fact that ⌘⇤D is obtained from the analysis of the vacuum state where GPS ' 2G1.
Therefore, GD = ⌘

⇤
DG1 is about twice larger compared to the maximum value allowed by the

NJL model. This makes the present approach applicable to describing the regime of strong
diquark couplings.

We construct the hybrid EoS of NS matter by imposing the conditions of β-equilibrium
and electric neutrality [7] as well as joining our EoS for the quark matter phase to the one for
the hadronic phase by means of the Maxwell construction. The hadronic phase is described
by the KVORcut03 model [15], which is a relativistic density functional model that includes
hyperons and has a medium dependent ratio of masses and couplings being a function of
the scalar density. Solving the TOV equations we construct the mass-radius diagram of NS
with quark cores shown on the left panel of Fig. 2. For the chosen sets of the vector and
diquark couplings the model is able to fit the constraints coming from the observation of PSR
J0348+0432 [16], PSR J0740+6620 [4, 5] and PSR J0030+0451 [17, 18] pulsars as well as
the gravitational wave signal from the merger GW170817 [19, 20]. The model also fits the
region of the 2σ confidence level coming from the analysis of the same gravitational wave
signal [6]. Getting to the 1σ region requires an adjustment of ⌘D, which is beyond the scope
of the present contribution.

We also compare the results of our model for the tidal deformability ⇤ of NS with the
constraints for it extracted from the gravitational wave signal of the inspiral phase of the
binary neutron star merger event GW170817 [6]. For this we calculate ⇤1 and ⇤2 of the
two components of the binary system with masses M1 > M2 providing the chirp mass [21]
M = 1.188 M�. The sets of ⌘V and ⌘D consistent with the discussed mass-radius constraints
get only to the 90 % confidence level interval of the constraint on ⇤1 and ⇤2. The agreement,
however, can be improved by simultaneous adjustment of the vector and diquark couplings.

5 Conclusions

We have studied a relativistic density functional approach to quark matter, which i) mimics
the quark confinement by a rapid growth of the quark self-energy in the confining region, ii)
respects chiral symmetry of strong interaction and iii) can be interpreted as a chiral quark
model with the density dependent coupling constants. In addition to the vector repulsion
channel, we have introduced the diquark pairing not studied before within the density func-
tional approach.

At zero baryon chemical potential we introduce mesonic correlations beyond the mean-
field. For this the most important pseudoscalar mode of quark correlations identified with the
pion excitations is considered within the Gaussian approximation. The corresponding pion
contribution to the thermodynamic potential is analyzed within the Beth-Uhlenbeck formal-
ism. Since the Mott dissociation of pions occurs at roughly the same temperature where the
e↵ective quark mass experiences a rapid decrease, the present approach exhibits a switching
between the hadron and quark degrees of freedom with increase of the temperature.

In order to model NS with quark cores we apply the present density functional approach
to construct a hybrid EoS of hadronic and color superconducting quark matter with the vector
repulsion. The results of this modeling are confronted to various constraints of the NS mass-
radius relation and tidal deformability. The approach provides a reasonable agreement with
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these constraints, however, having a potential for further improvement by adjustment of the
values of the vector and diquark couplings.
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