3^A_H and 4^A_H Lifetime, Yield, Directed Flow Measurements in Au+Au Collisions at \(\sqrt{s_{NN}} = 3 \) GeV With the STAR Detector

Chenlu Hu^1,* for STAR collaboration

^1Quark Matter Research Center, Institute of Modern Physics, Chinese Academy of Sciences

Abstract. In this proceedings, the lifetime and yields of 3^A_H and 4^A_H in Au+Au collisions at \(\sqrt{s_{NN}} = 3 \) GeV are presented. The measured yields are compared to measurements at other energies and theoretical models, and the physics implications are discussed. We also report the first observation of the 3^A_H and 4^A_H directed flow in 5 - 40% centrality. The directed flow of 3^A_H and 4^A_H are compared with those of the copiously produced particles such as p, \(\Lambda \), d, t, 3^He, and 4^He. These results shed light on light hyper-nuclei production in heavy-ion collisions in the high baryon density region.

1 Introduction

As is known to all, the normal nucleus is made up of protons and neutrons. When a nucleon is replaced by a \(\Lambda \) hyperon (\(S = -1 \). Here \(S \) denotes the quantum number of strangeness), the nucleus is transformed into a hyper-nucleus which allows us to study the hyperon-nucleon (Y-N) interaction. It is well known that 2-body and 3-body Y-N interactions, especially at high baryon density, are essential for understanding the inner structure of compact stars [1-2]. Measurements of the lifetime, binding energy, decay branching ratios of hyper-nuclei can give us important information on Y-N interaction.

Anisotropic flow has been commonly used for studying the properties of matter created in high energy nuclear collisions, due to its genuine sensitivity on early stage collision dynamics [3]. The first order coefficient of the Fourier-expansion of azimuthal distribution, known as directed flow (\(v_1 \)), has been analyzed for all particles ranging from the lightest pion-mesons to light nuclei in such collisions [4-5].

In this proceedings, the lifetime, yields and directed flow of 3^A_H and 4^A_H in Au+Au collisions at \(\sqrt{s_{NN}} = 3 \) GeV will be discussed. The data was collected by the STAR experiment at RHIC with the fixed-target (FXT) setup. The gold beam of 3.85 GeV/u is collided on a thin gold target with 1% interaction probability, located at 200 cm along the beam direction from the center of the STAR Time-Projection Chamber (TPC). A total of 260M good minimum bias (MB) events were selected for this analysis.

2 Data Analysis, Results and Discussion

At the \(\sqrt{s_{NN}} = 3 \) GeV collisions, the first order event plane is determined by the Event Plane Detector (EPD) [6], which is designed to measure the pattern of forward-going charged

*e-mail: huchenlu@impcas.ac.cn
particles emitted in heavy-ion collisions and covers a pseudorapidity range of $2.14 < \eta < 5.09$. The directed flow (v_1) discussed below is determined by the first order event plane.

2.1 Particle Reconstruction

The hyper-nuclei $^3\Lambda H$ and $^4\Lambda H$ are reconstructed with following decay channels: $^3\Lambda H \rightarrow ^3\text{He} + \pi^-\Lambda, ^4\Lambda H \rightarrow ^4\text{He} + \pi^-\Lambda$. To assure the quality of each track, a minimum of 15 hits out of 45 hits in the TPC is required. The secondary decay topology is reconstructed by the KFParticle program which is based on a Kalman filter method [7]. In the program, the error-matrices are used to enhance the reconstruction significance. A set of cuts on topological variables are applied to the hyper-nuclei candidates to optimize the significance.

2.2 $^3\Lambda H$ and $^4\Lambda H$ Lifetime Measurements

The reconstructed $^3\Lambda H$ and $^4\Lambda H$ candidates are divided into different $L/\beta\gamma$ intervals, where L is the decay length, β and γ are particle velocity and Lorentz factor, respectively. The raw signal counts N_{raw} for each $L/\beta\gamma$ interval are obtained from corresponding background-subtracted invariant mass spectrum using a bin counting method. The signal counts are corrected with the detector acceptance and reconstruction efficiency ($\varepsilon_{TPC} \times \varepsilon_{PID}$). The corrected hyper-nuclei counts as a function of $L/\beta\gamma$ is fitted to an exponential function ($N = N_0 e^{-L/\beta\gamma\tau}$) to obtain the mean lifetime τ.

The lifetimes $232 \pm 29(\text{stat.}) \pm 37(\text{syst.})$ for $^3\Lambda H$ (2-body decay channel) and $218 \pm 8(\text{stat.}) \pm 12(\text{syst.})$ for $^4\Lambda H$ are obtained from the $\sqrt{s_{NN}} = 3$ GeV data. As shown in Fig. 1, the $^4\Lambda H$ measurement is the most precise measurement to date, and within uncertainties, the measured $^3\Lambda H$ and $^4\Lambda H$ lifetimes are consistent with previous measurements from ALICE [8, 9], STAR [10], HypHI [11].

![Figure 1. Measured lifetimes of $^3\Lambda H$ (a) and $^4\Lambda H$ (b) are shown comparing to previous measurements and theoretical calculations as well as the free Λ lifetime. The experimental average lifetimes and the corresponding uncertainty of $^3\Lambda H$ and $^4\Lambda H$ are also shown as orange bands.](image)

2.3 $^3\Lambda H$ and $^4\Lambda H$ Yield Measurements

The hyper-nuclei $^3\Lambda H$ and $^4\Lambda H$ yields from their 2-body decay channels are extracted as a function of p_T and y in two centrality selections: 0–10% and 10–50%. The efficiency-corrected p_T spectra in each rapidity slice are extrapolated down to $p_T=0$ to obtain p_T integrated value of yields (dN/dy). Different functions (e.g blast-wave function) are used to estimate the systematic uncertainties in the unmeasured p_T regions. We have assumed branching ratios of 25% and 50% for the 2-body decay of $^3\Lambda H$ and $^4\Lambda H$, respectively.

The $^3\Lambda H$ and $^4\Lambda H$ yields at $|y| < 0.5$ as a function of beam energy in central heavy-ion collisions are extracted and are compared to theoretical models as shown in Fig. 2. For $^3\Lambda H$, the measured yield is consistent with the thermal model from GSI/Heidelberg [12]. The thermal model adopting the canonical ensemble can approximately describe the $^3\Lambda H$ yield
both at 3 GeV and 2.76 TeV. Canonical ensemble thermal statistics is required to account for the large \(\phi/K^- \) and \(\phi/\Xi^- \) ratios measured at the same energy as well. We also observe that the coalescence model (DCM) [13] is consistent with the \(^3\Lambda H\) yield while underestimating the \(^4\Lambda H\). On the other hand, the hybrid UrQMD overestimates both \(^3\Lambda H\) and \(^4\Lambda H\) yields by an order of magnitude.

2.4 \(^3\Lambda H\) and \(^4\Lambda H\) Directed Flow Measurements

Directed flow of \(\Lambda \) hyperons, \(^3\Lambda H\), and \(^4\Lambda H\) are extracted with event plane method. Figure 3 shows the \(v_1 \) for hyper-nuclei and \(\Lambda \) hyperons versus rapidity from the \(\sqrt{s_{NN}} = 3 \text{ GeV} \) Au + Au collisions. The yellow-red line is the result of linear fit to the data and is plotted in full rapidity region \(|y| \leq 0.9 \). For comparison, the \(v_1 \) distributions for \(p, d, t, ^3\text{He} \) and \(^4\text{He} \), from the events with same centrality, are shown as open symbols in the figure. Here the results of the linear fits to the light-nuclei are plotted as dashed-lines only in the positive rapidity region. As one can see, the \(v_1 \) of \(\Lambda \) hyperons is consistent with that of protons, and the slopes of hyper-nuclei \(v_1 \) are also similar to that of the corresponding light-nuclei with the same mass number within statistical uncertainties.

![Figure 3. Hyper-nuclei \(v_1 \) as a function of rapidity from the \(\sqrt{s_{NN}} = 3 \text{ GeV} \) 5 – 40\% mid-central Au + Au collisions at RHIC-STAR. In case of \(^3\Lambda H\), both 2-body (dots) and 3-body (triangles) decays are used. Results from fitting with a first-order polynomial function are shown as the yellow-red lines. The rapidity dependence of \(v_1 \) for \(p, d, t, ^3\text{He} \) and \(^4\text{He} \) are also shown as open-circles, diamonds, up-triangles, down-triangles and squares, respectively. The corresponding results of the linear fits are shown as dashed lines in the positive rapidity region.](image)

Extracted mid-rapidity \(v_1 \) slopes, \(dv_1/dy|_{y=0} \), for \(\Lambda \) hyperons, \(^3\Lambda H\), and \(^4\Lambda H\), are summarized in Fig. 4 as red filled-squares, as a function of particle mass. For comparison, the slopes of light-nuclei \(p, d, t, ^3\text{He} \), and \(^4\text{He} \) from the events with same centrality class (5-40\%) in \(\sqrt{s_{NN}} = 3 \text{ GeV} \) Au+Au collisions are shown as open circles. The result of a linear fit to the light-nuclei is shown as the yellow-red line in the figure. Overall, hyper-nuclei \(v_1 \) slopes are consistent with that of light-nuclei which has similar mass albeit the large uncertainties in the results. The mass dependence of the \(v_1 \) slope implies that the coalescence is the dominant mechanism for hyper-nuclei production in heavy-ion collisions.
3 Summary

In summary, we reconstruct the light hyper-nuclei $^3\Lambda$H and $^4\Lambda$H from $\sqrt{s_{NN}} = 3$ GeV Au+Au collisions at RHIC-STAR. Lifetimes of $^3\Lambda$H and $^4\Lambda$H from their 2-body decay channel are measured to be 232 ± 29 (stat.) ± 37 (syst.) and 218 ± 8 (stat.) ± 12 (syst.) respectively. The $^3\Lambda$H and $^4\Lambda$H lifetimes are consistent with previous measurements and theoretical calculations. Meanwhile, the hyper-nuclei $^3\Lambda$H and $^4\Lambda$H yields at $|y| < 0.5$ as a function of beam energy in central heavy-ion collisions are reported and compared to theoretical models. We also reported the first observation of $^3\Lambda$H and $^4\Lambda$H directed flow v_1 from mid-central (5-40%) collisions. The rapidity dependence of their v_1 are compared with that of Λ hyperon and light nuclei p, d, t, 3He and 4He from the collisions with the same centrality class. It is found that, within statistical uncertainties, the mid-rapidity v_1 slope of $^3\Lambda$H and $^4\Lambda$H are similar to those of light nuclei with the similar mass, such as t, 3He, and 4He. In other words, they seem to follow the baryon mass scaling. These observations imply that coalescence of nucleons and Λ hyperons is the dominant mechanism for the light hyper-nuclei production in such collisions.

4 Acknowledgments

We thank Drs. Y. Nara and J. Steinheimer for interesting discussions and the use of simulations code of JAM and UrQMD.

References