Nuclear cosmochronometers for supernova neutrino-process

Takehito Hayakawa1,2,*, Heamin Ko3, Myung-ki Cheoun3, Motohiko Kusakabe4, Toshitaka Kajino4,5,6, Satoshi Chiba7, Ken'ichi Nomoto8, Masa-aki Hashimoto9, Masaomi Ono10, Toshihiko Kawano11, and Grant J. Mathews12

1National Institutes for Quantum Science and Technology, Ibaraki 319-1106, Japan
2Institute of Laser Engineering, Osaka University, Osaka 567-0871, Japan
3Soongsil University, Seoul 156-743, Korea
4Beihang University, Beijing 100083, China
5National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
6The University of Tokyo, Tokyo 113-0033, Japan
7Tokyo Institute of Technology, Tokyo 113-0033, Japan
8Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Chiba 277-8583, Japan
9Kyushu University, Fukuoka 812-8581, Japan
10RIKEN, Saitama 351-0198, Japan
11Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
12University of Notre Dame, Notre Dame, IN 46556, USA

Abstract. The short-lived unstable isotopes with half-lives of 0.1−10 My have been used as nuclear cosmochronometers to evaluate from an astrophysical event such as supernova (SN) explosion or AGB s-process to the solar system formation. We have proposed shorted-lived radioisotopes of 92Nb and 98Tc as the nuclear cosmochronometers for supernova neutrino-process.

1 Introduction

A huge number of neutrinos emitted in core-collapse supernova (SN) explosions (ν process) [1] play an important role in stellar nucleosyntheses of rare some nuclides such as 7Li, 11B, 19F, 138La, and 180Ta [1–4]. When the high-energy neutrinos pass through the outer layers of the star they can induce nuclear reactions on pre-existing nuclei. Many nuclides are, in principle, generated by the ν process in SNe but the produced abundances are smaller than production by other major processes such as the s or r process by a few orders of magnitude. Thus, the ν process can only play a significant role in the synthesis of a rare isotope when the isotope is not produced by the major processes.

Short-lived unstable isotopes with half-lives of 10^6–10^8 y have been used as nuclear cosmochronometers to evaluate the time from an astrophysical event such as an AGB s-process or a SN explosion to the solar system formation (SSF) [5–8]. The unstable isotope 92Nb decays to the daughter nucleus 92Zr by β decay with a half-life of 3.47×10^7 y. Although 92Nb does not naturally exist at the present solar system, its existence at the SSF has been...
found by analysis of primitive meteorites [9–13]. Thus, ^{92}Nb has the potential to be used as a nuclear cosmochronometer for a nucleosynthesis episode which produces ^{92}Nb. However, the astrophysical origin of ^{92}Nb has not been established. Hayakawa et al. [14] have proposed the ν process origin for ^{92}Nb. Furthermore, the radioisotope ^{98}Tc ($T_{1/2} = 4.2 \times 10^6$ y) is another candidate for the ν-process cosmochronometer [15], although only an upper limit of $^{98}\text{Tc}/^{98}\text{Ru} < 6 \times 10^{-5}$ has been reported [16] for the ^{98}Tc initial abundance at the SSF.

2 Supernova ν-process calculation

There are six species of neutrinos: electron neutrinos, muon neutrinos, tau neutrinos and their anti-neutrinos. The neutrino-induced reactions can be classified into three groups: the neutral current (NC) reaction with all six neutrinos, the charged current (CC) reaction with electron neutrinos, and the CC reaction with electron anti-neutrinos [15]. Previous studies for ^{92}Nb [14], ^{138}La, and ^{180}Ta [1, 2] have shown that individual ν-process isotopes are predominantly synthesized by the CC reaction with ν_e and the NC reaction. Figure 1 shows a partial nuclear chart and nucleosynthesis flows around ^{92}Nb. ^{92}Nb is predominantly generated by the CC reaction with ν_e on ^{92}Zr and it is also produced by the NC reaction on ^{93}Nb. Figure 2 shows nucleosynthesis flows for ^{98}Tc. Among the CC reactions with ν_e, the $^{98}\text{Mo}(\nu_e, e^-)^{98}\text{Tc}$ reaction is the dominant reaction. There are two NC reactions: $^{99}\text{Ru}(\nu, \nu'p)^{98}\text{Tc}$ and $^{99}\text{Tc}(\nu, \nu'n)^{98}\text{Tc}$. One of the remarkable features for ^{98}Tc production is that ^{98}Tc is also produced by the CC reaction with ν_e though the $^{99}\text{Ru}(\nu_e, e^+n)^{98}\text{Tc}$ and $^{100}\text{Ru}(\nu_e, e^+2n)^{98}\text{Tc}$ reactions. This suggests that the ^{98}Tc abundance may be sensitive to the average energy of the electron anti-neutrinos. We have performed calculations of the neutrino-induced reaction cross sections using a QRPA model [17] and the branching ratios are calculated using a Hauser-Feshbach calculation with a CCONE nuclear reaction calculation code [18]. We have calculated ν-process production rates using a core-collapse SN model for SN 1987A with an kinetic energy of 10^{51} erg [19]. We have used a 20 M_\odot progenitor with a 6 M_\odot He core with a metallicity of $Z_\odot/4$. Because the neutron-induced reaction cross sections in the proton rich-side have not been well studied, we have calculated the neutron capture cross sections in this mass region [20]. We have calculated evolution of the progenitor star including the weak s-processes [20] with the calculated neutron capture reactions. The neutrino flux decays exponentially with a time constant of 3 s. The six neutrino species can be treated as three groups: electron neutrino, electron anti-neutrino, muon neutrino, muon anti-neutrino, tau neutrino, and tau anti-neutrino. The reaction cross sections are calculated using a QRPA model [17].
Figure 2. Nucleosynthesis flow and key nuclear reactions around 98Tc

anti-neutrino, and the other four neutrinos. Previous studies [22] for the energy spectra of the neutrinos have suggested the following energy hierarchy: $\langle \nu_e \rangle < \langle \bar{\nu}_e \rangle < \langle \nu_{\mu,\tau}, \bar{\nu}_{\mu,\tau} \rangle$. In the present calculation, we adopt average energies of $kT = 3.2, 5.0, 6.0$ MeV for $\langle \nu_e \rangle$, $\langle \bar{\nu}_e \rangle$, and $\langle \nu_{\mu,\tau}, \bar{\nu}_{\mu,\tau} \rangle$, respectively.

Figure 3 shows the calculated abundances. Integrating the layers within the mass range of $1.8 < M < 3.7$, we obtain masses of 5.1×10^{-13} and 3.4×10^{-11} M$_\odot$ for 98Tc and 98Ru, respectively. The contribution from the CC reactions with electron anti-neutrinos is relatively large compared to that of other heavy ν-process isotopes. The integrated mass fraction of 98Tc decreases by approximately 20% compared to one with all six neutrino spices without
the CC reactions with electron anti-neutrinos. 98Tc is the most sensitive to the temperature of the electron anti-neutrinos among heavy elements because the contribution of the CC reaction with electron anti-neutrinos to 92Nb, 138La, and 180Ta was considered to be negligibly small in the previous studies.

3 Age from the last SN to SFF

It is assumed that short-lived unstable isotopes are produced by a nearby SN before the SSF and subsequently they are mixed with the collapsing protosolar cloud. The isotopic abundance ratio at the time of SSF can then be expressed as

$$\frac{N(98\text{Tc})_{SSF}}{N(98\text{Ru})_{SSF}} = \frac{f N(98\text{Tc})_{SN} e^{-\Delta/\tau}}{N(98\text{Ru})_{SN} + f N(98\text{Ru})_{SN}},$$

where $N(98\text{Tc})_{SN}$ and $N(98\text{Ru})_{SN}$ are the numbers of 98Tc and 98Ru, respectively, in the SN ejecta, $N(98\text{Ru})_{\odot}$ is the number of the initial 98Ru nuclei in the collapsing cloud, Δ is the time from the SN to SSF, and f is the dilution fraction. The timescales Δ in the range of $3\times10^7-10^8$ y have been previously estimated from several short-lived radioisotopes [7]. The dilution factor has been estimated to the values from 7×10^5 to 2×10^3. The initial solar abundance of 92Nb has been reproduced using the SN ν-process model with the parameters of $\Delta = 10^6$ (or 3×10^7 y) and $f = 3\times10^{-3}$ [14]. The 98Tc/98Ru ratios calculated using the ν-process model and $f = 3\times10^{-3}$ are 98Tc/98Ru = 1.3×10^{-5} and 1.1×10^{-7} for $\Delta = 10^6$ and 3×10^7 y, respectively. These calculated ratios are lower than the measured upper limit of 98Tc/98Ru < 6×10^{-5} [16]. Thus, it is possible to explain both the initial abundances of 92Nb and 98Tc by the contribution of a single SN ν-process.

References