
Impact of the decay width in Breit-Wigner formula on
Maxwellian-averaged cross section for neutron capture on
16O

Si-Zhe Xu and Shi-Sheng Zhang

1School of Physics, and International Research Center for Big-Bang Cosmology and Element Genesis,

Beihang University, Beijing 100191, P. R. China

Abstract. Neutron capture on 16O may serve as a crucial neutron poison reac-

tion in weak s-process occurred in massive stars. In our previous study [Zhang,

S. S., Xu, S. Z., He, M. et al. Eur. Phys. J. A 57, 114 (2021)], we found that the

contribution from low-lying resonances to Maxwellian-averaged cross section

(MACS) progressively increases as the energy goes beyond 70 keV. In Breit-

Wigner formula for resonant cross section, the decay width is a decisive quan-

tity. In this paper, we discuss the impact of three kinds of decay widths, i.e. a

constant width and two energy-dependent widths, on reaction cross sections and

MACSs. The penetration factor adopts semi-classical WKB approximation and

the asymptotic solution, respectively. We clarify that energy-dependent width

are necessary for a reasonable behavior of resonance cross section around res-

onance peak and low-energy region far from the peak. The difference of two

energy-dependent widths decreases from 3.7 to 1.5 with the energy increasing

from 0.01 keV to 1000 keV. It results in similar behavior of resonance cross

sections, but a slight difference by 1% for MACSs when E > 50 keV.

1 Introduction

Light nuclei play an important role in the studies of neutron capture nucleosynthesis. Some

of them may absorb a large amount of neutrons, as so called “neutron poisons”, which have

an important impact on the synthesis of heavy elements. 16O may be one of the candidates

due to its high abundance and large reaction rate of neutron capture process. It has been

shown that the difference of the 16O(n, γ)17O rates apparently influence the weak s-process in
massive stars [1], which trigger us to study the properties of 16O(n, γ)17O, especially for its

cross section.

The cross section of neutron capture on 16O mainly consists of three parts: direct cap-

ture, resonance, and the interference between the direct capture and the resonance. We have

estimated these terms separately and found that the contribution from low-lying resonance

to Maxwellian-averaged cross section (MACS) progressively increases as the energy goes

beyond 70 keV, in which the resonant cross section takes the form of Breit-Wigner formula

with an energy-dependent decay width [2, 3].

Usually, the decay width of a resonant state is defined as a constant in textbooks and some

references [4, 5]. Except for a constant width, an energy-dependent width is also utilized in

some works [6–8], including our former attempts [2, 3]. There are two ways commonly
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used to obtain an energy-dependent width. One way is to calculate the penetration factor by

using semi-classical WKB approximation, then decay width as a function of energy can be

evaluated. The other way is to express penetration factor by the asymptotic solution (AS)

of Bessel function, which is adopted in our former work [3]. Here, we aim at clarifying

the effectiveness and rationality among these three kinds of decay widths, and showing their

impacts on resonant cross sections and MACS.

This paper is made up of three sections. In section 2, we simply review the theoretical

framework to achieve penetration factors in two ways, i.e. WKB approximation and asymp-

totic solution. In section 3, we show the distinct impact of constant and energy-dependent

decay widths on resonant cross sections and MACSs. Finally, we draw a simple summary in

section 4.

2 Theoretical framework

2.1 Maxwellian-averaged cross section

As key inputs of nucleosynthesis simulations, the reaction rates NA < σv > is equivalent to

MACS < σ >kBT except for a factor, i.e., NA < σv >= NAvkBT < σ >kBT , where NA is the

Avogadro number, and vkBT is the thermal velocity. The expression of MACS reads,

< σ >kBT=
2√
π

1

(kBT )2

∫ ∞

0

σ(E) E exp(− E
kBT

) dE, (1)

which is the convolution of the reaction cross section σ(E), the incident energy E, and expo-

nential term with Boltzmann constant kB and temperature T .

2.2 Breit-Wigner formula for resonant cross section

The reaction cross section mainly consists of three parts: direct capture, resonance, and the

interference between the direct capture and the resonance. The Breit-Wigner formula is com-

monly utilized for the estimation of the resonant cross section, written as

σR(E) =
π�2

2μE
2J + 1

(2Ja + 1)(2JX + 1)

ΓaΓb

(E − Er)2 + (Γ/2)2
, (2)

in which μ is the reduced mass, defined as μ = mamX/(ma + mX), Er is the resonance energy,

and E is the incident energy of the projectile; J, Ja and JX refer to total angular momentums of

the compound nucleus, the projectile a, and the target X, respectively; Γa and Γb are the decay

widths of incoming particle a and outgoing particle b, and total width Γ is the summation of

them. As shown in Breit-Wigner formula, the decay width of incoming particle a is one of

important resonance parameters, but lacks of detailed description in the textbooks. Usually,

one regards decay width as a constant in the calculations. We will show the difference aroused

by constant and energy-dependence widths in the following.

2.3 The decay width

The decay width usually increases with incident particle energy E as the barrier decreases.

An energy-dependence width takes the form as shown in Ref. [9]

Γl =
3�

R

√
2E
μ

Plθ
2
l , (3)
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where Pl is the penetration factor, and θ2l is the dimensionless reduced width, defined as

θ2l = χ
∗
l (R)χl(R)R/3. In this definition, Γl is the function of the particle energy E, proportional

to the penetration factor Pl and
√

E.

2.4 Penetration factor

Penetration factor Pl is defined as the ratio of the probabilities of particles appearing at infinity

to those appearing at R, which can be expressed by the radial wave function. For r > R,
The solution is a linear combination of regular Coulomb wave function Fl(r) and irregular

Coulomb wave function Gl(r). Therefore, it reads

Pl =
χ∗l (∞)χl(∞)

χ∗l (R)χl(R)
=

1

F2
l (R) +G2

l (R)
. (4)

2.4.1 The asymptotic solution (AS)

Without Coulomb interaction, the radial wave function can be simplified as a linear com-

bination of spherical Bessel function jl(r) and Neumann function nl(r), i.e. so called the

asymptotic solution (AS). Hence, the penetration factor can be rewritten as:

Pl =
1

ρ2( j2l (R) + n2
l (R))

, (5)

where ρ = kR with wave number k and matter radius of the nucleus R. In Table 1, we

list the penetration factors Pl and level shift S l for different reaction channels with angular

momentum l = 0, 1, 2, .... Here, we mainly focus on the low-lying 2p3/2 resonant state, in

which l = 1.

Table 1. Penetration factors Pl and level shift S l for different reaction channels without Coulomb

interaction [10].

l Pl S l

0 1 0

1 ρ2/(1 + ρ2) 1/(1 + ρ2)
2 ρ4/(9 + 3ρ2 + ρ4) −(18 + 3ρ2)/(9 + 3ρ2 + ρ4)

l
ρ2Pl−1

(l − S l−1)2 + ρ2P2
l−1

ρ2(l − S l−1)
(l − S l−1)2 + ρ2P2

l−1
− l

2.4.2 The WKB approximation

The WKB approximation is commonly used for barrier tunneling penetration problems,

which is the approximated solution of a differential equation like y′′ = − f (x)y. Here, we

use f (r) = 2μ[E − Vl(r)]/�, so that the penetration factor follows [9]:

Pl(E) =
χ∗l (∞)χl(∞)

χ∗l (R)χl(R)
=

[
Vl(R)

E
− 1

]1/2
exp

⎡⎢⎢⎢⎢⎢⎣−2
√
2μ

�

∫ R0

R

√
Vl(r) − Edr

⎤⎥⎥⎥⎥⎥⎦ , (6)

where R denotes the nuclear matter radius, and R0 is the classical turning point satisfied with

Vl(R0) = E. Since there is no Coulomb interaction for neutron capture process, it can be
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reduced to ∫ R0

R

√
Vl(r) − Edr = R

⎡⎢⎢⎢⎢⎢⎣ √Elln

⎛⎜⎜⎜⎜⎜⎝
√

El

E
+

√
El

E
− 1

⎞⎟⎟⎟⎟⎟⎠ − √El − E

⎤⎥⎥⎥⎥⎥⎦ . (7)

Later on, we will discuss the impact of penetration factors on the decay widths, the impact of

the energy-dependent widths on the resonant cross sections and MACSs.

3 Results and discussions

3.1 Decay widths

In last section, we introduce two ways to obtain penetration factors Pl, i.e. the AS and WKB

approximation. Given the penetration factors, we can calculate the decay widths with Eq. 3.

The dimensionless reduced width θ2l is also required. With measured resonance energy ER

and width Γn(ER) from experiments, θ2l is easy to be determined by the Eq. 3. For the case of
16O(n, γ)17O, the decay width Γn = 40 keV and the resonant energy ER = 411 keV, are lately

measured [11]. Then, θ2l can be fixed to 5.128 × 10−2 with PAS
l in Eq. 3. The matter radius

of 16O takes the value of 2.6 fm, and the angular momentum l = 1 corresponding to p-orbital

valence neutron.

Figure 1. (a) A constant decay width (black line), and two decay widths Γn(E) as a function of energy

E, based on the penetration factors from the asymptotic solution (red line) and the WKB approximation

(blue line), for 16O(n, γ)17O, respectively. (b) ratio of ΓWKB
n to ΓAS

n as a function of energy E.

We plot the decay widths Γn(E) as a function of energy E in Figure 1(a). The ratio of

ΓWKB
n (E) to ΓAS

n (E) is also shown in Figure 1(b). In low-energy region, ΓWKB
n is larger than

ΓAS
n , with a ratio about 4 at E = 0.01 keV. The difference becomes smaller as the energy

increases.
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3.2 Resonant cross sections

With the energy-dependent decay width Γn(E), we achieve the resonant cross section σR(E)

from Breit-Wigner formula. In Figure 2, we compare the resonant cross sections σR(E) with

a constant width, and those based on two energy-dependent decay widths. It can be clearly

seen that the resonance cross sections with a constant width show an abnormal increase in

the low-energy region far from the resonance peak. It can be analyzed from From Eq. 2.

When E approaches 0 keV, (E−Er)
2+ (Γ/2)2 becomes a constant, σ(E) ∝ 1/E in low-energy

region. This is completely opposite to the trend of the resonance cross sections evaluated by

energy-dependent widths, which becomes smaller as neutron energy decreases. It is more

reasonable because lower particle energy away from resonance peak leads to smaller reaction

probability, in accordance with lower cross section.

Figure 2. (a) Resonant cross section of 411 keV resonance of 16O(n, γ)17O, with a constant decay width

Γn = 40 keV (black line), and two energy-dependent Γn(E) based the asymptotic solution (red line) and

the WKB approximation (blue line). (b) ratio of σWKB
R to σAS

R as a function of energy E.

The ratio of σWKB
R to σAS

R generally decreases with E increasing, except for the region

nearby resonance energy. This can be seen from Eq. (2) that the ratio σWKB
R /σAS

R is propor-

tional to the ratio ΓWKB
n /ΓAS

n when E is far away from resonance energy Er. However, the ratio

of resonant cross sections rapidly declines around Er. This is because the ratio σWKB
R /σAS

R
is proportional to the ratio ΓAS

n /Γ
WKB
n , when Γγ � Γn and E → Er. Therefore, compared to

ΓAS
n , the larger ΓWKB

n causes smaller resonant cross section around the resonance energy.

3.3 Maxwellian-averaged cross sections

Figure 3 displays the MACSs as a function of kBT , based on three decay widths: a constant,

ΓWKB
l , and ΓAS

l , respectively. The MACSs with a constant width deviate a lot from the other

two, especially for low-energy region, which is consistent with abnormal increase of the
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resonant cross section shown in Figure 2 (a). For energy-dependent widths Γ(E), the ratio

ΓWKB
n /ΓAS

n becomes close to 1.0 (less than 1%) when E > 50 keV. From this sense, the WKB

approximation is also a good way to evaluate MACSs.

Figure 3. (a) MACSs for 16O(n, γ)17O based on three decay widths: constant (black dashed line), ΓWKB
l

(blue line), and ΓAS
l (red line), respectively. (b) ratio of < σ >WKB

kBT to < σ >AS
kBT as a function of kBT .

4 Summary

In this paper, we study the impacts of three kinds of decay widths in Breit-Wigner formula on

resonant cross sections and MACSs. We found that a constant decay width shows abnormal

behavior of the resonant cross sections especially for the low-energy region far away from the

resonance peak. Therefore, energy-dependent widths are strongly recommended. Via com-

paring energy-dependent widths from commonly used WKB approximation and the asymp-

totic solution, we see that the deviations decrease with the energy goes up. Correspondingly,

the ratio of the resonant cross sections shows similar behavior except for the region around

the resonance peak. Interestingly, the differences between these two ways shrunk quickly

and turn out to be less than 1% with increasing energy beyond 50 keV. Therefore, we make

a conclusion that WKB approximation is also a good way to be used for neutron capture

process.
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