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Abstract. The Lie algebraic method offers a systematic way to find aberration coefficients of any order for
plane-symmetric reflective optical systems. The coefficients derived from the Lie method are in closed form
and solely depend on the geometry of the optical system. We investigate and verify the results for a single
reflector. The concatenation of multiple mirrors follows from the mathematical framework.

1 Introduction

The calculation of Seidel coefficients of rotationally sym-
metric optical systems is well known in the optical de-
sign literature [1, 2]. Seidel sums provide a clear insight
into the contribution of each interface of the system to the
third order transverse ray aberrations at the image plane
and provide analytic expressions for the aberration coef-
ficients. We aim to derive similar closed form expres-
sion for aberration coefficients of plane-symmetric opti-
cal systems. To construct the optical mapping for plane-
symmetric reflective systems, we employ Lie algebraic
methods [3–5]. This mapping systematically produces the
analytic aberration expansion up to the desired order in
terms of initial position and direction.

2 Analytic Ray-Tracing Equations for
Reflecting Interfaces

In classical Hamiltonian optics, the propagation of light
rays in an optical medium with refractive index n(q, z)
is determined by the Hamiltonian equations, where the
Hamiltonian H is given by [6]:

H(q, p, z) = −
√

n(q, z)2 − |p|2. (1)

Here, q are the space and p are the momentum coordinates
of the ray. Since at each z-plane, z = const., a ray is fully
determined by (q, p), they represent the phase space as in
classical Hamiltonian mechanics, with the only restriction
that |p| ≤ n(q, z).

In order to follow the ray path from object to image
plane, we need to be able to reflect the ray at a plane-
symmetric mirror, to rotate the coordinate system such that
the optical axis ray (OAR) remains aligned with the z-axis
and to propagate the reflected ray further with respect to
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the rotated system. For instance, reflection at an interface
z = ζ(q) can be described by its vectorial formulation as:

p′ = p− 2
∇ζ(q̄)

1 + |∇ζ(q̄)|2
(p · ∇ζ(q̄) − pz), (2)

where p′ are the momentum coordinates after reflection
and q̄ are the position coordinates of the point of impact
between the ray and the interface. Position coordinates
before and after reflection are projected onto the z-plane at
the point of impact of the OAR and the coordinate system
rotates in order to keep the z-axis aligned with the OAR
before and after its reflection, respectively, see Figure 1.

The optical axis ray, with coordinates q = 0 = p, will
have reflected coordinates in the rotated system qR = 0 =
pR and all the considered rays will lie in a neighbourhood
of it. As such, the mappingM representing reflection with
rotation of the coordinate system can be expanded around
the OAR.

z = ζ(q)

OAR

qy

z

qR
y

A
B

2θ

2θ

Figure 1. The reflection operator maps the point A of the incom-
ing ray to the point B of the outgoing ray in the rotated coordinate
system. The OAR (dashed) is mapped from the origin to itself.
The incidence angle of the OAR on the reflector is equal to θ.
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3 Lie Algebraic Tools

The Poisson bracket is an operator [·, ·], which maps any
pair of functions f , g in (q, p) to a single function of (q, p),
denoted by [ f , g]:

[ f , g] :=
∂ f
∂q
·
∂g

∂p
−
∂ f
∂p
·
∂g

∂q
.

The Poisson bracket turns the space of polynomials on
phase space into a Lie algebra [3–5]. We define the linear
Lie operator [ f , · ] associated with f acting on g as follows:

[ f , · ]g = [ f , g].

If the argument of [ f , · ] is a vector-valued function g, then
it acts component-wise on g. The main Lie algebraic tool
we use is the Lie transformation. The Lie transformation
exp([ f , · ]) associated with f and generated by [ f , · ] is de-
fined as:

exp([ f , · ]) =
∞∑

k=0

[ f , · ]k

k!
. (3)

The powers in (3) follow the recursive definition

[ f , · ]0 = I, [ f , · ]k = [ f , [ f , · ]k−1], k = 1, 2, . . . .

It can be proven that the propagation and the reflection
with rotation mappings are representable as infinite con-
catenations of Lie transformations [3, 7] of the form

M = exp([g2, · ]) exp([g3, · ]) exp([g4, · ]) · · · . (4)

Here, the generators g2, g3, etc. are homogeneous polyno-
mials on phase space of degree 2, 3, etc. For instance,
the second-order generator h2 for free propagation in a
medium of constant refractive index n over a distance d
along the optical axis reads:

h2(p) = −
d
2n
|p|2. (5)

The polynomial g2 associated with the combined action of
reflection and rotation to the new coordinate system reads:

g2(q, p) =
cos(θ)
ρ

q2
x +

1
R cos(θ)

q2
y, (6)

where ρ and R are the sagittal and tangential radii of curva-
ture, respectively, and θ is the incidence angle of the OAR
on the mirror, see Figure 1.

4 The Fundamental Element and Optical
Systems

By representing each mapping in the form (4) and con-
catenating propagation from an intermediate object plane,
reflection by a tilted interface with rotation to the outgoing
reference system and, lastly, propagation to an intermedi-
ate image plane, we can describe a so-called fundamental
optical element by its mapping of the form (4). If we are

interested in aberration terms up to third order, then the
final mappingMel corresponding to one single optical el-
ement will be

Mel = exp([g̃2, · ]) exp([g̃3, · ]) exp([g̃4, · ]), (7)

where all the information about the optical element is con-
tained in the coefficients of g̃2, g̃3, g̃4, that are thus depen-
dent on the geometry of the reflector.

By concatenating multiple optical elements, using the
mathematical tools described in [3–5], it is possible to de-
rive a mapping Mtot that describes the complete optical
system up to third order aberrations, which has the same
form as in Eq. (7). We therefore have

Mtot = exp([t2, · ]) exp([t3, · ]) exp([t4, · ]), (8)

where the coefficients of the generators ti are related to the
geometry of the complete system.

5 Results

We have been able to recover the results recently presented
in [8], where the authors determine the fourth order sur-
face expansion coefficients of a reflector. The requirement
for such reflector is that all field-independent aberrations,
i.e., p = 0 for incoming rays, are zero up to third order.
By constructing the optical mapping of the form (7) and
investigating its action on the initial phase space coordi-
nates, we reproduced exactly the results presented in [8,
Table 3].

We proceeded similarly for the case where we required
that q = 0 at the object plane for incoming rays and zero
third order aberrations. The spherical ellipsoid is known
to be a perfect imager for an object and image point lying
at its respective foci [9]. The surface coefficients we cal-
culated from the requirement q = 0 agree exactly with the
surface expansion of the corresponding spherical ellipsoid.
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