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Abstract. Dimensional microscopy is an essential tool for non-destructive and fast inspection of manufacturing
processes. Standard approaches process only the measured images. By modelling the imaged structure and
solving an inverse problem, the uncertainty on dimensional estimates can be reduced by orders of magnitude.
At the same time, the inverse problem needs to be solved in a timely manner. Here we present a method
of accelerating the inverse problem by reducing images to their elementary features, thereby extracting the
relevant information and distinguishing it from noise. The resulting reduction in complexity allows the inverse
problem to be solved more efficiently by utilize cutting edge machine learning based optimization techniques.
By employing the techniques presented here, we are able to perform for highly accurate and fast dimensional
microscopy.

1 Introduction

Dimensional microscopy is an essential tool for non-
destructive and fast inspection of manufacturing pro-
cesses. One important application is the bidirectional mea-
surement of line structures [1]. The current state of the art
involves analysing the image data using threshold tech-
niques. In many measurements, information about the
sample and microscope is also available but remains un-
used. A more accurate estimate of the structure dimen-
sions can be obtained by modelling the light interaction
with the structure and comparing the simulated structure
images to their experimental counterparts. By varying the
model’s structure dimension parameters (i.e. line width,
particle diameter), the parameters which minimise the dif-
ference between model and experiment can be determined.
This process is called solving the inverse problem.

In order for the inverse problem to be solvable, the
model needs to be able to describe the measurements to
a high degree of accuracy. To this end, we have de-
veloped a forward model using the finite element solver
JCMwave [2], which takes into account an efficient sam-
pling of the microscope’s illumination pupil, nanooptical
scattering at the structure and phase aberrations effects
due to the imaging system [3]. Due to the sophistication
of the model, we require a method of solving the poten-
tially multi-dimensional inverse problem with relatively
few model evaluations. Recently, the Bayesian target vec-
tor optimization (BTVO) method has been shown to both
efficiently solve the inverse problem and provide informa-
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tion on the uncertainties of the predicted dimensional pa-
rameters such as line widths and particle diameters [4].

2 Method

Typical methods of solving the inverse problem attempt
to globally minimise χ2 ( chi-squared) calculated from the
simulated data and measured data and variances (denoted
as σ2). In the case of images the simulated and mea-
sured data consists of the intensity on each pixel (Isim and
Imeas, respectively) in multiple focal and afocal measure-
ment planes. For high resolution images, the number of
pixel data points can run in to the tens of thousands. Using
these data points, χ2 can be calculated by summing up the
contribution of each ith pixel to the overall χ2,

χ2(x⃗) =
N∑

i=1

(I(i)
sim(x⃗) − I(i)

meas)2

σ2
i

. (1)

The inverse problem is then solved by finding the free
model input parameters (represented by the vector x⃗), such
as the line width or diameter, which minimize the total χ2

for all N pixel data points. The method of Bayesian op-
timization (BO) performs this minimization by building a
surrogate model (called Gaussian process regression) for
χ2, which can then be used to find the global minimum ef-
ficiently. However, in building our surrogate model for the
sum of the χ2 contributions, we lose information on the in-
dividual pieces of measurement data, and we approximate
a multivariate Gaussian distribution for χ2.

Alternatively, the BTVO method creates a surrogate
model (i.e. Gaussian process regression) for each piece of
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Figure 1. (a) Image of a Cr particle in a plane 2 µm from the
focal plane, (b) first few Zernike basis functions used to expand
the image in (a). (c-d) Schematic image displaying the number of
Gaussian processes needed for different model approaches (one
cube represents one Gaussian process). (c) If every pixel in the
image stack is modelled with a Gaussian process, (d) if the co-
efficients of the image expansion are modelled with a Gaussian
process.

measured data, which are then used to evaluate χ2. This
has the advantage of providing the correct distribution for
χ2 which results in accurate uncertainties on the recon-
structed parameters.

Figure 2. (a) Image of a Cr particle in a plane 2 µm from the fo-
cal plane. (b) The expansion of the image using Zernike polyno-
mials. (c) The absolute value of the expansion coefficients used
to in the expansion for (b).

The BTVO approach has a larger computational over-
head, needing to train N Gaussian processes rather than a
single one in the case of BO. In the example of our pixel
data, training tens of thousands of Gaussian processes (one
for each pixel) would be much too computationally de-
manding, as shown schematically in figure 1. Instead we
seek to extract the essential information contained in the
images, while removing the noise, by expanding the im-
ages in each plane in a set of orthogonal basis functions.
For the particle Zernike polynomials are chosen due to the
radial symmetry of the images. The coefficients of the ba-
sis function expansion then become the new measurement
data. Expanding our simulated images in the same basis,
we can solve the inverse problem by minimizing χ2 for the
basis coefficients instead of the pixel intensities.

3 Results

Figure 2 presents an example image expansion in a series
of Zernike polynomials. Also shown are the absolute val-
ues of the basis coefficients determining the expansion.
These values represent our dimensionally reduced mea-
surement data which we use for solving the inverse prob-
lem in place of the pixels intensities of the image depicted
in (a).

In this contribution, we will demonstrate the effective-
ness of employing the Bayesian target vector optimization
method for dimensional microscopy. We present results
for model based estimates of line widths based on bidirec-
tional optical measurements and compare with estimates
based on other experimental techniques.
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