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Abstract. Quasi-elastic neutron scattering (QENS) from bulk-water at 300 K, measured on the IRIS backscat-
tering neutron spectrometer (ISIS, UK), is interpreted using the jump diffusion model (JDM), a "minimalistic"
multi-timescale relaxation model (MRM) and molecular dynamics simulations (MD). In the case of MRM data
analysis is performed in the time domain, where the relaxation of the intermediate scattering function is de-
scribed by a stretched Mittag-Leffler function, Eα(−(|t|/τ)α). This function displays an asymptotic power law
decay and contains the exponential relaxation function as a special case (α = 1). To further compare the two
approaches, MD simulations of bulk water were performed using the SPCE force field and the resulting MD
trajectories analysed using the nMoldyn software. We show that both JDM and MRM accurately describe the
diffusion of bulk water observed by QENS at all length scales, and confirm that MD simulations do not fully
describe the quantum effects of jump diffusion.

1 Introduction

Quasi-elastic neutron scattering (QENS) is a powerful
spectroscopic technique used to explore diffusive motions
of atoms on length scale between 1 Å and 100 Å and times
scales between 10−9s and 10−13s. Because of the domi-
nant incoherent scattering response from hydrogen atoms,
QENS studies explore, in particular, the diffusive motions
of individual hydrogen atoms and are thus ideal to study
water dynamics. Considering the study of bulk-water, the
QENS spectra cannot be completely described by a small-
step diffusion model for free diffusion. This happens be-
cause the diffusion in liquids takes place in discrete diffu-
sive jumps [1] and a corresponding model for simple liq-
uids was formulated by Chudley, using both Schofield’s
semiclassical approximation [2] and Van Hove’s formal-
ism of correlation functions [3]. Following these ideas,
Teixeira et al. [4] extended the model for water, includ-
ing vibrational and rotational degrees of freedom. As with
any “spatial motion model" [5], the resulting intermediate
scattering function is composed of several Lorentzians, re-
lated to different motion types. The ability to rationalize
QENS data in terms of a relatively small number of param-
eters makes this approach widely adopted in QENS data
analysis for a variety of other systems [6, 7, 8, 9, 10, 11].
Although successful, the method described in [4] requires
prior information of the system, since it is essential to at-
tribute each Lorentzians needed to represent the measured
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dynamics to a specific motion. A good example here is
the confined water in clay minerals, where different popu-
lations of water molecules coexist [7, 10]. To avoid such
a priori assumptions, alternative approaches for interpret-
ing QENS data are urgently needed. Having that in mind,
a “minimal model approach”, where the multi-scale re-
laxation of the water molecules can be described without
any prior information [12], has been recently proposed and
successfully used to analyse the dynamics of confined wa-
ter molecules in proteins and clay minerals [13, 14, 15].
This said analysis shows that the new method can capture
the full dynamics of the confined water with the benefit
that it rationalizes extensive sets of QENS data in terms
of a minimal number of parameters. Here we apply both
methods to analyse bulk water, H2O, at 300K.

To further understand the differences and similarities
between the two approaches, a complementary technique
is needed. Molecular dynamics (MD) simulation is the
method of choice since it provides detailed information
about the dynamics of molecules and atoms of complex
systems within the length and time scale probed by QENS.
Considering the system of bulk-water, we can then com-
pare the motion of water molecules seen by MD trajec-
tories with those probed experimentally and, as a “side
effect”, verify the simulations [16]. For this purpose,
MD simulations have been performed for bulk-water at
300K using the LAMMPS Molecular Dynamics Simu-
lator with the Velocity-Verlet algorithm as its numerical
solver. To directly compare the measured QENS spec-
tra to the MD results, the conversion of the trajectories
and velocities to either S (Q, ω) or its Fourier transformed
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F(Q, t) was carried out using the program package nMol-
dyn [17, 18, 19, 20].

2 Neutron scattering functions

2.1 Dynamic structure factor

In a standard QENS experiment from hydrogen rich sys-
tems one measures the dynamic structure factor [4, 6],

S (Q, ω) =
1

2π

∫ +∞
−∞

dt e−iωtF(Q, t), (1)

which is the time Fourier transform of the intermediate
scattering function containing within it information about
the structural dynamics of the system under consideration;
|Q| = Q being the magnitude of the scattering vector and
ℏω the energy transferred between the neutron and the nu-
cleus.

Defining R̂ j(t) as the time-dependent position operator
of scattering atom j, we have

F(Q, t) ≈
1
N

N∑
j=1

〈
e−iQ·R̂ j(0)eiQ·R̂ j(t)

〉
, (2)

where ⟨. . .⟩ denotes a quantum ensemble average summed
over all N hydrogen atoms. We note in this context that
ℏω is the energy transfer from the neutron to the sample.

The intermediate scattering function and the dynamic
structure factor fulfill the symmetry relations

F(Q,−t) = F(−Q, t + iβℏ), (3)

S (Q, ω) = eβℏωS (−Q,−ω), (4)

where β = 1/kBT is the inverse Boltzmann temperature.
Equation (4) is the well-known detailed-balance relation.

2.2 Generic form of F(Q, t)

For the further considerations we write the intermediate
scattering function in the generic form [12, 13, 14],

F(Q, t) = (1 − EIS F(Q))ϕ(Q, t) + EIS F(Q) (5)

where (1 − EIS F(Q)) and EIS F(Q) are, respectively, the
quasi-elastic and elastic amplitudes and ϕ(Q, t) is an atom-
averaged normalized self-correlation function describing
the relaxation dynamics of the hydrogen atoms,

ϕ(Q, t) =
1

NH

∑
α

〈
δρ̄†α(Q, 0)δρ̄α(Q, t)

〉
∑
α

〈
δρ̄†α(Q, 0)δρ̄α(Q, 0)

〉 . (6)

Here the sum
∑
α runs over all hydrogen atoms, where

NH is their total number and δρ̄α(Q, t) = ρ̄α(Q, t)−⟨ρ̄α(Q)⟩
is the deviation of the spatially Fourier-transformed single
particle density of atom α, ρ̄α(Q, t) = eiQ·R̂ j(t), with respect
to its mean value. By construction, ϕ(Q, t) has the same
symmetry properties as the intermediate scattering func-
tion and must satisfy ϕ(Q, 0) = 1 and limt→∞ ϕ(Q, t) = 0.

Since we consider here scattering from an isotropic
sample, S (Q, ω) = S (Q, ω) and F(Q, t) = F(Q, t), and
Q ≡ |Q|.

2.3 Semiclassical approximation

We now introduce the symmetrized and normalized relax-
ation function [14],

ϕ(+)(Q, t) =
ϕ(Q, t + iβℏ/2)
ϕ(Q, iβℏ/2)

, (7)

which is real and symmetric in time, and the correspond-
ing intermediate scattering function,

F(+)(Q, t) = (1 − EIS F(Q))ϕ(+)(Q, t) + EIS F(Q). (8)

The choice of using ϕ(+)(Q, t) instead of ϕ(Q, t) is mo-
tivated by Schofield’s semi-classical correction [2], which
consists of relating the shifted relaxation function with its
classical counterpart [14],

ϕ(+)(Q, t) ≈ ϕ(cl)(Q, t), (9)

and is valid up to the first order in ℏ, giving some justi-
fication for analyzing QENS data with classical diffusion
models [2, 13].

3 QENS models

3.1 Jump diffusion model (JDM)

To obtain the half-width at half-maximum (HWHM),
γ(Q), of the Lorenztian, L(Q, ω), which represents
the broadened energy distribution that results from
neutron−nucleus collisions and corresponds to the popula-
tion statistics of one relaxation process, the QENS spectra
were fitted using the following function,

S (Q, ω) = [EIS F(Q)δ(ω)
+ (1 − EIS F(Q))L(Q, ω)] ⊛ R(Q, ω), (10)

where R(Q, ω) denotes the resolution function of the in-
strument and defines the observation time of the spectrom-
eter. The symbolL(Q, ω) stands for a Lorentzian function,

L(Q, ω) =
1
π

γ(Q)
γ(Q)2 + ω2 . (11)

The observed QENS spectra essentially arise from the
translational diffusion of the molecules and we use here
the well-established jump diffusion model (JDM) [1] to
describe the experimental data, with the Chudley-Elliot re-
laxation rate

γCE(Q) =
DtQ2

1 + DtQ2τ0
(12)

where Dt is the translation diffusion coefficient and τ0 the
residence time, i.e. the time between the discrete jumps of
the hydrogen atoms.

The fit with a single Lorentzian, L(Q, ω) corresponds
to choosing the relaxation function in the generic form (5)
of the intermediate scattering function to be an exponen-
tially decaying function for t > 0,

ϕ(+)
JDM(Q, t) = exp(−γ(Q)|t|), (13)

which is symmetrized by choosing the absolute value of t
as argument.
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Figure 1. Left panel: Model relaxation function, Eα(−(|t|/τ)α), for 0 < α ≤ 1. Right panel: The corresponding relaxation rate spectra
defined by Eq. (18).

3.2 "Minimalistic" multi-scale relaxation model

The QENS data were also analyzed in the time domain
using a "minimalistic" multi-timescale relaxation model
(MRM) [12, 13, 14]. The intermediate scattering function
required for such analysis was obtained by Fast Fourier
transforming the experimental QENS spectra. In the fitting
procedure the generic form of the intermediate scatting
function, Eq. 8, is assumed to have a (symmetrized) re-
laxation function of the form of a stretched Mittag-Leffler
(ML) function [12, 13, 14] (the Q-dependence is omitted
here),

ϕ(+)
ML(t) ≡ Eα(−(|t|/τ)α) (0 < α ≤ 1, τ > 0), (14)

which can be considered a generalization of the exponen-
tial function and admit EIS F(Q) > 0. We note that,

Eα(z) =
∞∑

k=0

zk

Γ(1 + kα)
(15)

is an entire function in the complex plane [21], where Γ(z)
is the generalized factorial [22], and that the exponential
function is retrieved in the special case α = 1. Here α sets
the form of the relaxation function and τ its time scale. The
left panel of Fig. 1 shows the model relaxation function
for various values of α. For 0 < α < 1 the stretched ML
function takes a scale-invariant power law form,

ϕ(+)
ML(t) t≫τ

∼
(t/τ)−α

Γ(1 − α)
, (16)

and since limz→0 Γ(z) = ∞, this long time tail will van-
ish for α → 1, i.e for exponential relaxation. The Q-
dependent parameters in the above model are thus α, de-
termining the form of the relaxation function, τ, setting the
time scale, and the EISF [23].

Important for the following discussions is that the
stretched ML function can be written as a continuous su-
perposition of exponentially decaying functions,

ϕ(+)
ML(t) =

∫ ∞
0

dλ pα,τ(λ)e−λt (t ≥ 0) (17)

where the relaxation rate spectrum, pα,τ(λ), has the
form [24],

pα,τ(λ) =
sin(πα)

πλ ((λτ)−α + (λτ)α + 2 cos(πα))
. (18)

The above relaxation rate spectrum fulfills the con-
ditions of a probability distribution, which are positiv-
ity, pα,τ(λ) ≥ 0, and normalization,

∫ +∞
−∞

dλ pα,τ(λ) = 1.
The right panel of Fig. 1 shows the relaxation rate spec-
trum for different values of α on a dimensionless scale,
where τ = 1. We note here that all moments ⟨λk⟩ ≡∫ +∞
−∞

dλ λk pα,τ(λ) diverge for k ≥ 1, which follows from
the fact that, according to Eq. (14), ⟨λk⟩ = ∂k

t ϕ
(+)
ML(t)

∣∣∣
t=0,

and that ϕ(+)
ML(t) is not differentiable at t = 0. The median,

λ1/2, and which is defined through
∫ λ1/2

0 dλ pα,τ(λ) = 1/2,
has, however, the particularly simple form,

λ1/2 = 1/τ, (19)

which will be used in the following.

4 Experimental and computational
methods

4.1 Experimental details and data reduction

Data on bulk-water were collected using IRIS, a cold neu-
tron indirect backscattering spectrometer installed at the
ISIS Spallation Neutron and Muon source. The spectrom-
eter provides an intrinsic energy resolution of 17.5 µeV
(FWHM), corresponding to an upper experimental obser-
vation of ≈ 200 ps for those scattered neutrons energy
analysed at λ = 6.3Å [8]. The bulk-water sample was
mounted in a cylindrical sample holder and measurements
were conducted at 300K.

The measured dynamic structure factor is inevitably
resolution broadened, which can be mathematically ex-
pressed through the convolution integral

S m(Q, ω) =
∫ +∞
−∞

dω′ R(Q, ω − ω′)S (Q, ω), (20)

where the index “m” stands for “measured”. A vanadium
standard, that can be considered a completely elastic and
isotropic material, is used to define the intrinsic resolu-
tion function of the spectrometer, R(Q, ω), and calibrate
the measured data. Such intrinsic broadening is accounted
for using the reduction and analysis program Mantid [25].
After calibration and background subtraction, using data

3
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collected from an empty sample container, the measured
QENS spectra were transformed into the dynamic struc-
ture factor, S (Q, ω), and the spectrum grouped to obtain
9 constant scattering vectors in the range 0.55Å

−1
≤ Q ≤

1.85Å
−1

.

4.2 MD simulation and analysis

A cubic box of 1728 water molecules, with a side length of
3.72nm, was simulated at 300K using the SPCE force field
[26] and applying periodic boundary conditions. Coulomb
interactions in presence of periodic boundary conditions
were treated by the particle-particle-particle-mesh (PPPM)
method [27] and the Lennard-Jones part of the potential
was cut at 1.4 nm. Prior to the production run, the sys-
tem was energy minimized and subsequently equilibrated.
The production run was performed for 1 ns, with a time
step of 1 fs and the Berendsen thermostat [28] was used
to keep the system at the desired temperature of 300K.
During the production run, the positions and velocities of
the atoms were saved every 0.01ps and the SHAKE algo-
rithm [29] was used to constrain the interatomic distances
within the water molecules. The resulting MD trajecto-
ries were analysed using the nMoldyn software package
[17, 18, 19, 20] which allowed direct comparison between
the simulation results and the experimental data. Note
that for this project some of the nMoldyn algorithms were
rewritten in Python3 [30], and the physical quantities com-
puted using Computerome [31].

5 Results and Discussion

5.1 Data analysis of the QENS spectra

The measured QENS spectra were analyzed

1. in the frequency domain, using the jump diffusion
model Eq. (10), and

2. in the time domain, using the multiscale relaxation
function (14) for the symmetrized relaxation func-
tion with the generic form (5) of the intermediate
scattering function.

The details will be described separately in the follow-
ing.

5.1.1 Data analysis with the jump diffusion model

The measured QENS spectra were first analysed using
Eq. (10) and the Mantid software package [25]. Here a
single Lorentzian relaxation is assumed and fast vibra-
tional motions accounted for by adding a linear back-
ground term. As a result only a few priors were needed to
analyse the data. The result of the fit and obtained parame-
ters, are shown in Figs. 2a and 2b. The translational diffu-
sion coefficient, obtained by fitting γ(Q) using Eq. 12, was
found to be Dt = 2.38 · 10−9m2/s and the residence time
τ0 = 0.61ps, corresponding to a jump length of about 1
Å. These values are in agreement with the literature [4, 6].
The quality of the fit can be further verified by inspecting
Fig. 3.

5.1.2 Data analysis with the multi-scale relaxation
model

Here the QENS spectra are analyzed in the time domain,
using the generic form given by Eq. (8) of the intermedi-
ate scattering function with the model relaxation function
described by Eq. ((14). For the analysis three steps are per-
formed. For more details we refer the reader to the original
work describing the model [13]:

1. Symmetrization the QENS spectra. Based on the
detailed balance relation, Eq (4), the QENS spectra
are symmetrized with respect to ω,

S (+)(Q, ω) =
e−βℏω/2S (Q, ω)∫ +∞

−∞
dω e−βℏω/2S (Q, ω)

(21)

which guarantees that
∫ +∞
−∞

dω S (+)(Q, ω) =

F(+)(Q, 0) = 1. By defining and using S (+)(Q, ω)
we make sure that our spectra are symmetric and
fulfill the detail balance relation, making it possible
to easily Fourier transform the spectra and describe
it using semi-classical models [13].

2. Compute and deconvolve the intermediate scat-
tering function. Assuming that the resolution func-
tion, Eq. 20, is symmetric in ω, the “measured” in-
termediate scattering function is computed using a
discrete approximation of the inverse Fourier trans-
form F(+)

m (Q, t) =
∫ +∞
−∞

dω eiωtS (+)
m (Q, ω). By writ-

ing F(+)
m (Q, t) = R(Q, t)S (+)(Q, t) according to the

convolution theorem of the Fourier transform, we
obtain,

F(+)(Q, t) = F(+)
m (Q, t)/R(Q, t) for |t| < tc. (22)

The cutoff time is determined by the resolution ∆E
(FWHM) of the instrument, writing tc = ℏ/2∆E. An
explicit illustration can be found in Ref. [23].

3. Parameter fit. Once the experimental data was re-
duced following the steps described above, the de-
convolved F(+)(Q, t) was fitted using Eq. (8) using
the IMinuit package [32]. This approach uses a
least-square fitting routine to find the set of parame-
ters which minimize the χ2-value [32].

The result of fitting F(+)(Q, t) with Eq. (14) is shown
at selected Q-value Fig. 2c. It can be observed that the
model follows the experimental data quite well. From the
fit parameters, shown in Fig. 2d, we note that the evo-
lution of α(Q) accounts for a certain heterogeneity of the
local environment of the diffusing water molecules, which
becomes visible on increasingly larger spatial scales where
α(Q) ≈ 0.9. Besides, the fact that local motions are faster
than more delocalized ones is clearly reflected by the de-
cay of the relaxation time scale τ(Q) with Q.

5.1.3 Comparing the results obtained in frequency and
time domain

We start the comparison between the results of the QENS
data analyses with the two models by resuming that the

4
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Figure 2. Overview of the data analysis performed on the QENS spectra for bulk-water at 300K. a) The jump diffusion model (JDM)
fit of the dynamic structure factor, S (Q, ω), according to Eq. 10. The residuals between the Lorentzian fit and the QENS spectrum
are also plotted along with the resolution and the linear background. b) The half width at half maximum (HWHM) γ(Q)JDM values
extracted from each JDM fit as a function of Q2, compared to the HWHM γ(Q)MRM determined from the τ(Q) parameter of the multi-
scale relaxation model (MRM). Both sets of HWHM data are fitted using, Eq. 12, where the fit results are presented above/below the
fit in a corresponding color. c) MRM fit of the symmetrized, normalized, and deconvolved intermediate scattering function, F(+)(Q, t),
according to Eq. 8. d) Water dynamics parameters of the QENS spectra as a function of Q obtained from the MRM model fit of
F(+)(Q, t): i) α(Q), ii) the EIS F(Q), and iii) τ(Q). The lack of Q-dependence and zero value for the EIS F(Q) reflects that, as expected,
the water molecules are not spatially constrained.

JDM describes the relaxation of the intermediate scat-
tering function with a single exponential function, Eq.
(13), whereas the MRM describes the relaxation with a
stretched Mittag-Leffler function, Eq. (14). Trivially
γ(Q) = 1/τ(Q) in the limit α → 1, where ϕ(+)

ML(t) =
ϕ(+)

JDM(t), but the interesting question is how 1/τ(Q) com-
pares to γ(Q) for α < 1. The answer is given in Fig. 2b,
which shows that γ(Q) ≈ 1/τ(Q) over the whole Q-range
and that thus for both models (JDM and MRM) yield sim-
ilar values are obtained for the parameters Dt and τ0. This
is an important result since it shows that the MRM can
be considered as a refined form of the JDM, in the sense
that the Chudely-Elliot model is a physical model for the
median of the MRM,

λ1/2(Q) ≈ γCE(Q). (23)

This also further confirms that the multi-scale relax-
ation model is able to fully capture the complex and het-

erogeneous relaxation processes of the intermediate scat-
tering function without prior assumptions and a minimal
number of fit parameters.

5.2 Reproducing the experimental spectra by MD
simulations

To verify that the MD simulation reproduces the QENS
data, we compare the results graphically for three different
Q-values in Fig. 4. Here the QENS data were transformed
into F(+)(Q, t) following steps 1-2 described in Section
5.1, while the produced trajectories of the MD simulations
were converted into the intermediate scattering function of
the form F(Q, t), using rewritten algorithms from nMol-
dyn [30]. Note that the coherent part of F(Q, t) is omitted
for the MD simulations, since we assume that only the in-
coherent contribution is probed in the experiment.

5
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Figure 3. Zoom of the QENS experimental spectra for bulk-water at 300 K fitted using the jump diffusion model (JDM), according
to Eq. 10 at three different Q-values. The residuals between the Lorentzian fit and the QENS spectrum are also plotted along with the
resolution and the linear background.

Figure 4. The symmetrized, normalised and deconvolved intermediate scattering function, F(+)(Q, t), for the QENS data and the MD
simulation of bulk-water at 300K, at three different Q-values.

Looking at Fig. 4, we observe that the MD simulation
follows the QENS data at longer times. The large vari-
ation of F(+)(Q, t) with increasing computation time was
previously noted in experimental QENS data [33] and is
most likely related to the numerical Fourier transforma-
tion. Furthermore, considering that the dynamics of the
system is hidden in the decay of F(+)(Q, t), we quantify
the difference between the QENS data and MD simulation
for all Q-values by the printed reduced χ2-value. Here we
observe that for higher Q-values the simulations do not re-
produce the data equally well.

5.3 Reproducing the modelled spectra by MD
simulations

Knowing that the MD simulation is comparable with the
QENS data up to a certain point in time and space, we now
evaluate the MD simulation output against the modelling
approaches used to analyse the measured QENS data.

Using the MRM to inspect the MD results is straight-
forwardly done by fitting the simulated F(Q, t) to Eq. 8.

To consider the JDM, a free single exponential function
is used to describe the diffusive motion. The results are
depicted in Fig. 5a, where the two fitted models are plot-
ted against the experimental data for two Q-values. We
observe that the fitted curves follow the data in F(+)(Q, t)
well. However, by analysing Fig. 5b, where the fitted
models F(Q, t) f it are transformed into S (Q, ω) f it and com-
pared with the measured spectra, both models capture the
measured QENS spectra particularly well for low Q-values
only. This result can be better understood by analysing the
evolution of γ(Q), as a function of Q2 obtained from the
two models fits and depicted in Fig. 5d. We observe that
for Q > 1Å

−1
the QENS data show asymptotic behav-

ior, characteristic of jump diffusion of the atoms, while
the MD simulations shows a linear growth indicating free
diffusion with DMD

t ≈ 3 · 10−9 m2

s . As previously reported
[6, 34], classic MD simulations have difficulties capturing
the quantum effects of jump diffusion, making it plausible
that the MD simulations continue probing free diffusion.
This is somehow expected since the semi-classical approx-

Page 6 of 8
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Figure 5. Overview of the data analysis performed on the MD simulation of bulk-water at 300K. a) The symmetrized, normalized,
and deconvolved intermediate scattering function, F(+)(Q, t), of the QENS data for bulk-water at 300K plotted together with the jump
diffusion model (JDM) fit and multi-scale relaxation model (MRM) fit of the MD simulation, according to a single exponential function
and Eq. 8. b) The fitted models transformed into the symmetrized, normalized and convolved dynamic structure factor, S (+)(Q, ω),
plotted alongside the QENS spectra of bulk-water at 300K for comparison. c) Water dynamics parameters for the QENS data and
MD simulation as a function of Q obtained from the multi-scale relaxation model fit of F(+)(Q, t): i) α(Q), ii) the EIS F(Q), and
iii) τ(Q). The lack of Q-dependence and zero value for the EIS F(Q) reflects that, as expected, the water molecules are not spatially
constrained. d) Extracted half width at half maximum (HWHM) γ(Q)JDM(MD) for each JDM fit of the QENS spectra and MD simulation
as a function of Q2, compared to the HWHM γ(Q)MRM(MD) determined from the τ(Q) parameter of the MRM fit of the QENS spectra
and MD simulation. Both HWHM for the MD simulation are fitted using the free diffusion model (FDM), γ(Q) = DtQ2 + const.
resulting in DJDM(MD)

t = 3.04 · 10−9 m2

s and DMRM(MD)
t = 3.17 · 10−9 m2

s . Both show minimal offset. Note that the HWHM for the last
Q-value is omitted for the MD simulation, due to its larger size.

imation of the detailed balance relation, used to make the
classical time correlation function equal to the quantum
time correlation function, is only valid to the first order of
ℏmeaning that for high Q-values the approximation breaks
down.

Now we turn to the evolution of the parameters of the
MRM found by the fit of the MD simulation as a function
of Q presented in Fig. 5c along with the fit parameters
found for the QENS measured data. The following can be
observed. (i) The value for the α(Q) parameter obtained
by the two approaches agrees until Q ≈ 1.2Å

−1
, where

it starts to diverge. This indicates that a slightly different
diffusive motion of the hydrogen atoms is probed, where
the MD simulation shows diffusion within a rougher har-
monic potential, as the plateau value of α ≈ 0.95 suggests.

(ii) τ(Q) shows the same Q-dependence with a 10% dif-
ference in magnitude, confirming that the MD simulation
probes a faster diffusion.

6 Conclusions

Here, molecular dynamics (MD) simulations at 300K have
been computed for bulk-water and compared to the mea-
sured quasi-elastic neutron scattering (QENS) spectra of
the same system. The intermediate scattering function
F(Q, t) for the MD simulations, computed using updated
nMoldyn algorithms, could be related to the measured
QENS spectra either in terms of F(Q, t) or its Fourier
transform; known as the dynamic structure factor S (Q, ω).
The comparison was done graphically, with supporting χ2-
values, along with analysis using both the jump diffusion
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model (JDM), consisting of fitting the measured spectra
with a sum of Lorentzians, and a newly introduced "min-
imalistic" multi-scale relaxation model (MRM), which
describes the the multi-scale relaxation of the hydrogen
atoms of the measured spectra. The juxtaposition of the
QENS data and the MD simulation for bulk-water showed
that the MD simulation describes well the translational dy-
namics of the water relaxation. However, further investi-
gation revealed that in reality the MD simulation cannot
completely capture the discrete jumps occurring at more
localized length scales where quantum effects becomes
significant.

More importantly, by revisiting the modeling of QENS
from bulk water, we show that the MRM, a new “minimal-
istic” energy landscape-based method for QENS analysis,
can be used to accurately describe the data at all length
scales. This is confirmed by comparing the Chudley-Elliot
relaxation time and the relaxation time scale τ(Q) obtained
from MRM, defining the median relaxation rate through
λ1/2(Q) = 1/τ(Q), and showing that these values follow
on the same master curve.
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