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Abstract. We study new symmetries of the Cardy-Rabinovici model and their
dynamical applications. The Cardy-Rabinovici model is a 4dU(1) gauge the-
ory with electric and magnetic matters, which is a good playground for studying
the dynamics of the Yang-Mills theory withθ angle. In this model, the electro-
magneticS L(2,Z) self-duality is not realized in a naive way. Still, theS L(2,Z)
transformations become legitimate duality operations by appropriately gauging
theZN 1-form symmetry. We construct new noninvertible symmetries from this
duality at self-dual points and determine their non-group-like fusion rules. As
an application, we can rule out the trivially gapped phase for some self-dual
parameters due to a mixed gravitational anomaly of this new symmetry. We
also show how the conjectured phase diagram of the Cardy-Rabinovici model
is consistent with this anomaly matching condition.

The S U(N) Yang-Mills theory has a topologicalθ-term iθ
8π2

R
tr f ∧ f which affects the

vacuum structure non-perturbatively. Studying theθ-term dependence is an interesting and
challenging topic because it will give an important insight into the nonperturbative aspects of
theS U(N) Yang-Mills theory.

One of the most popular understandings of quark con�nement is the dual superconduc-
tor picture. In this scenario, we assume that the monopole condenses at the vacuum, and
this condensation forms the color electric �ux tube, leading to the linear quark-antiquark
potential. We therefore suppose that the vacuum is the monopole-condensed branch around
θ = 0. As θ increases, we expect a dyon condensation since a magnetic monopole acquires
an electric chargeθ/2π, known as the Witten effect. For example, atθ = 2π, the dyon with
(−1)-electric charge and (+1)-magnetic charge should condensate. Thus, in the interval be-
tweenθ ∈ [0,2π], the candidates of ground states are the monopole-condensed branch and
dyon-condensed branch, and they will be degenerate two vacua atθ = π.

There might be a more nontrivial possibility aroundθ = π, e.g., an exotic dyon conden-
sation, where the oblique con�nement realizes [1]. Cardy and Rabinovici proposed a toy
model mimicking such aθ dependence, which we call the Cardy-Rabinovici model [2, 3].
This model is a Villain latticeU(1) gauge theory, consisting ofU(1) gauge �eld, charge-N
electric matter, and monopole. This model has the monopole-condensed con�nement phase,
dyon-condensed con�nement phase, and oblique con�nement phase (see Fig. 1), so it gives
an interesting playground to study the physics of the topologicalθ angle.
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Recently, the notion of symmetry has been extensively generalized (see [4] and references
therein). In modern terminology, ordinary symmetry is characterized by a symmetry genera-
tor of a co-dimension-1 topological defect with a group-like structure. A lesson from recent
works indicates that the essential part is the "topological" condition, which corresponds to
the conservation law. Topological defects with higher codimension, known as higher-form
symmetries, describe symmetries acting on extended objects and have many applications to
gauge theories. There is the other direction of the generalization of symmetry: allowing non-
group-like fusion rules of symmetry defects. This type of symmetry is called non-invertible
symmetry.

While non-invertible symmetries have been studied mainly in 2d QFTs, there has been
excellent progress in higher-dimensional cases very recently. One breakthrough is a sys-
tematic construction of non-invertible defects when the theory is self-dual under gauging a
discrete symmetry. When this kind of self-duality exists, one can construct a co-dimension-1
topological defect by the half-space gauging of the discrete symmetry (See Sec. 2). This con-
struction is a sort of generalization of the Kramers-Wannier duality defect [5–7]. Moreover,
the existence of such duality defects can constrain possible vacuum structures.

Our work [8] is to apply this strategy to the Cardy-Rabinovici model.The main results are
as follows.

1. In the Cardy-Rabinovici model, it has been known that an apparentS L(2,Z) “self-
duality” generated byS andT transformation. We point out that this “self-duality” is a
duality between the Cardy-Rabinovici model and its appropriatelyZ[1]

N -gauged model.

2. From this duality, at a self-dual parameter, we can construct a non-invertible defect by
a half-spaceZ[1]

N -gauging operation.

3. For some cases, we �nd a mixed gravitational anomaly, which constrains the dynamics,
e.g., rules out the trivially gapped vacuum.

1 Cardy-Rabinovici model

Here we review some basics of the Cardy-Rabinovici model: what the Cardy-Rabinovici
model is, why this model is interesting for studying dynamics related toθ-angle, and the
conjectured phase diagram of this model.

1.1 Description of the model

Although the Cardy-Rabinovici model is originally formulated as a Villain-type lattice gauge
theory, we skip lattice details and describe only the essentials of its formal continuum de-
scription here. The Cardy-Rabinovici model consists ofU(1) gauge �eld, charge-N Higgs
matter, and charge-1 magnetic matter. The partition function of this theory can be symboli-
cally written as follows1,

ZτCR =

Z
Daexp

�
−SτU(1)[da]

� X

C,C′: loops

WN(C)H(C′), (1)

1In terms of the worldline representation, there should be some weighte−Smat[C,C′] with the desirable properties.
See [9] for details. For simplicity, we setSmat[C,C′] = 0, corresponding to a naive low-energy limit of charged
matters.
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Figure 1. Conjectured phase diagram of the Cardy-Rabinovici model. The electric particle condenses
in the weak coupling region (Higgs phase), and the magnetic particle condenses in the strong coupling
region (con�nement phase). Because of the Witten effect, the dyon tends to condense by increasingθ.
Taken from [8].

where we have introduced the Maxwell action

SτU(1)[da] :=
1

2g2

Z
da∧ ∗da−

iNθ
8π2

Z
da∧ da, (2)

and the complex couplingτ := θ
2π + i 2π

Ng2 . The integration over the matter �elds is represented
as the sum of all possible worldlines of the charge-N electric particle and charge-1 magnetic
particle. Note that the Cardy-Rabinovici model has theZN 1-form symmetry, which we
denote byZ[1]

N , since the electric matter is charge-N.
Here, we have introduced the unusualN factor in the theta term. Since magnetic

lines are explicitly present in this model, there is no conventional 2π periodicity here be-
cause a magnetic line acquires an electric line by the Witten effect, namely⟨H(C′)⟩Sτ+1/N

U(1)
=

⟨H(C′)W(C′)⟩SτU(1)
. Still, since the extra charge-N electric line can be absorbed by the in-

tegration over the Higgs �eld, we have the 2π periodicity of θ angle with this convention:
Zτ+1

CR = ZτCR.

1.2 Phase diagram and S L(2,Z) duality

Cardy and Rabinovici estimated which particle may condensate by a rough free-energy argu-
ment and obtained the conjectured phase diagram [2, 3]. For the case where there is always
some condensation2, the phase diagram is shown in Fig. 1 In the weak-coupling region, the
electric matter tends to condense, and the Higgs phase appears. In the strong-coupling region,
monopole condensation wins, and the theory is in the con�nement phase. Asθ increases, the
dyon will condense as inferred from the Witten effect. For stronger coupling, more exotic
dyon condensates, the oblique con�nement phases, appear. At the �xed strong coupling, the
θ-dependence of this phase diagram is qualitatively the same as that expected in the Yang-
Mills theory: monopole condensation atθ = 0, dyon condensation atθ = 2π, and spontaneous
breakdown ofCP symmetry (or possible nontrivial phase) atθ = π. Therefore, this model
gives an interesting playground for studyingθ angle dependence3

2Coulomb phase, where no charged particle condenses, may appear.
3Moreover, the mixed anomaly structure ofZ[1]

N × CP symmetry of this model is identical to that of theS U(N)
Yang-Mills theory, and the oblique con�nement phase nontrivially satis�es the matching condition of this anomaly
[9].
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A notable feature we will use is that this phase diagram has the apparentS L(2,Z) in-

variance generated by theS (electromagnetic) andT (θ → θ + 2π) transformations. Let
 
n
m

!

denote a particle or line operator with electric chargeNn and magnetic chargem. Then, the
phase diagram has the invariance under the followingS andT transformation.

S : τ 7→ −
1
τ
,

 
n
m

!
7→

 
0 −1
1 0

!  
n
m

!
=

 
−m
n

!
, (3)

T : τ 7→ τ + 1,
 
n
m

!
7→

 
1 −1
0 1

!  
n
m

!
=

 
n−m

m

!
. (4)

From this invariance, it is tempting to speculate that the Cardy-Rabinovici model
has the electromagneticS L(2,Z) self-duality. However, the standard electromagneticS-
transformation isnot the duality of the Cardy-Rabinovici model. Indeed, the Cardy-
Rabinovici model has electric charge-N and magnetic charge-1 matters, but theS-
transformed model has electric charge-1 and magnetic charge-N matters. Note also that the
S-transformed model has magneticZ[1]

N symmetry instead of the electricZ[1]
N symmetry.

Then, what kind of duality does theS L(2,Z) invariance of the phase diagram suggest? In
Sec. 3.1, we see that the Cardy-Rabinovici model hasS L(2,Z) duality accompanied by the
Z[1]

N gauging.

2 Non-invertible duality symmetries

As mentioned above, symmetries are characterized by symmetry generators, or topological
defects. Based on this view, we can consider various generalizations of symmetries. One
direction, which many studies has focused on in the last few years, is to allow non-group-
like fusion rules for the topological defects, so called non-invertible symmetry. This kind of
topological defects has been known in 2d CFTs for long years, but not in higher-dimensional
QFTs until very recently. In this section, a basic idea for a systematic construction of one
class (“duality symmetries”) of non-invertible symmetries is brie�y reviewed [5–7]. The
class of non-invertible symmetries we consider is a generalization of the Kramers-Wannier
duality defect in 2d Ising model, which is one of the famous non-invertible defects.

It is well-known that the 2d Ising model has the Kramers-Wannier duality which relates
the high-temperature Ising model and low-temperature one. On a general manifold, the dual-
ity operation is accompanied by the gauging of the spin-�ippingZ2 symmetry. Therefore, at
the critical temperature, the self-duality can be written as

TIsing/Z2 ≃ TIsing, (5)

where the critical Ising model is denoted byTIsing. The Ising model at the self-dual point is
invariant underZ2 gauging.

Using this kind of duality, we can construct the co-dimension-1 non-invertible defect by
half-space gauging. Let us decompose the spacetime manifoldX into two partsX = X+ ∪ X−

with identical boundaryM = ∂X+ = −∂X−. Then, gaugingZ2 symmetry in the half-spaceX+

with the Dirichlet boundary condition for theZ2 gauge �eld onM de�nes a co-dimension-1
topological defect (Fig. 2).

The invariance under gauging (5) assures that the half-space gauged theory is equivalent
to the original theoryTIsing with a co-dimension-1 defectD(M). In addition, since the gauge
�eld for a discrete symmetry is topological, we can continuously deform the boundaryM on
which the Dirichlet boundary condition for the discrete gauge �eld is imposed. The defect we
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:=

𝒟(𝑀)

Figure 2. Schematic picture of the de�nition of the Kramers-Wannier duality defect in the 2d critical
Ising model. Because of the invariance under the gauging (5), the interface betweenTIsing/Z2 andTIsing

gives theTIsing with a co-dimension-1 defect.

de�ned here is co-dimension-1 and topological, so this de�nes a symmetry. However, this is
not an ordinary symmetry, but a non-invertible symmetry with the following nontrivial fusion
rules (withZ2 symmetry defectη(M))

D(M) ×D(M) = 1+ η(M), D(M) × η(M) = η(M) ×D(M) = D(M) (6)

Since gaugingZ2 twice is a trivial identity operation, one might naively expect thatD(M)
would be an inverse ofD(M). However, due to the half-space gauging construction, the
fusion productD(M) × D(M) leaves theZ2 gauging operation onM: 1+ η(M) (known as a
“condensation operator” of 1-gauging [10]).

In short, the above discussion indicates that, when the theory is invariant under the gaug-
ing of a discrete symmetry, there exists a non-invertible duality defect constructed by the half-
space gauging. In this viewpoint, the generalization to higher dimensional cases is straight-
forward: an invariance under gauging a discrete symmetry leads to a non-invertible symmetry
[6].

3 Non-invertible symmetries in the Cardy-Rabinovici model

In Sec. 1.2, we have seen that the phase diagram respects some sort ofS L(2,Z) duality, but the
Cardy-Rabinovici model itself does not have the standard electromagneticS duality. First, in
Sec. 3.1, we shall see that a correct description of the “S L(2,Z) duality” is an invariance under
gaugingZN 1-form symmetry. As presented in the previous section, this invariance leads to
a non-invertible symmetry by half-space gauging. Then, in Sec. 3.2, we obtain nontrivial
constraints on the phase diagram when such a noninvertible symmetry exists.

3.1 Invariance under gauging, duality defects, and fusion rules

To state our claim, we introduce a few notations: We de�ne the partition function with aZ[1]
N

background �eldB ∈ H2(X; ZN) as,

ZτCR[B] =
Z
Daexp(−SτU(1)[da+ B])

X

C,C′: loops

WN
da+B(C)Hda+B(C′). (7)

and that of the gauged model with a dualZ[1]
N background �eldB as4,

Zτ
CR/(Z[1]

N )p
[B] =

Z
Db ZτCR[b] exp

 
iNp
4π

Z

X
b∧ b+

iN
2π

Z

X
b∧ B

!
. (8)

4We set the normalization of
R
Db as

R
Db = |H

0(X;ZN)|
|H1(X;ZN)|

P
b∈H2(X;ZN).
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where we writeCR/(Z[1]
N )p for Z[1]

N -gauged the Cardy-Rabinovici model with the discreteθ
term iNp

4π

R
X

b∧ b, (p = 0, · · · ,N − 1).
One of our main claims is that there is a duality between the Cardy-Rabinovici model and

its gauged one:

CRτ/(Z[1]
N )p ≃ CRS Tp(τ) (9)

In terms of partition functions, we have

Zτ
CR/(Z[1]

N )p
[B] = N

χ(X)
2 (S Tp(τ))

χ(X)+σ(X)
4 (S Tp(τ))

χ(X)−σ(X)
4 ZS Tp(τ)

CR [B]

= N
χ(X)

2 (τ + p)−
χ(X)+σ(X)

4 (τ + p)−
χ(X)−σ(X)

4 Z−(τ+p)−1

CR [B], (10)

whereχ(X) is the Euler number andσ(X) is the signature of the 4d spacetime manifoldX.
In particular, at the “self-dual” coupling of someS Tp operation,τ = S Tp(τ), this relation
means the invariance under gauging a discrete symmetry. Therefore, by a parallel discussion
of the Kramers-Wannier duality defect, we can construct non-invertible symmetries at such
couplings.

Let us brie�y describe an intuitive understanding of the claim (9).
We �rstly focus on thep = 0 case, theS duality: CRτ/Z[1]

N ≃ CRS(τ). The integration
of a U(1) gauge �eld consists of (a) sum over bundle structure and (b) local �uctuation of
the connection. Correspondingly, the �eld strength is decomposed as da = m+ d(δa), where
the Chern class partm ∈ H2(X; Z) characterizes the topological sector, andδa is a globally-
de�ned 1-form for local �uctuations. TheZ[1]

N gauging procedure replaces da by da+ b with
the Z[1]

N gauge �eldb ∈ H2(X; ZN). This replacement da + b = d(δa) + (m+ b) effectively
fractionalizes the Chern-class part by 1/N, (m+b) ∈ 1

N H2(X; Z)5. Therefore, with a rescaling
of the local �uctuation partδa, theZ[1]

N gauging results in the 1/N rescaling of theU(1) gauge
�eld: da+ b = da′/N with a newU(1) gauge �elda′.

How do electric and magnetic lines are affected by this rescaling? The effect for the
Wilson loop is simple:Wda+b(C,Σ) becomesW1/N

da′ (C,Σ), whereWda+b(C,Σ) := ei
R
Σ

da+b and
Σ is the surface whose boundary isC. In particular, the charge-N Wilson loop,WN

da+b(C) =

eiN
R
C a, which is a genuine line operator in theZ[1]

N -gauged theory, becomes the unit charge
Wilson loop fora′, Wda′ (C). For the magnetic line, it is convenient to recall the (continuum)
de�nition of the 't Hooft loop. The 't Hooft loop fora, Hda(C), introduces a defect onC with
the following boundary condition: for small two-spheresS2 linking to the loopC, we imposeR

S2 da = 2π, which becomes
R

S2 da′ = 2πN in terms ofa′. Thus, the charge-1 't Hooft line
Hda+b(C) becomes the charge-N line HN

da′ (C).
Therefore, since the Cardy-Rabinovici model is aU(1) gauge theory with electric charge-

N and magnetic charge-1 matters, theZ[1]
N -gauged model is equivalent to aU(1) gauge theory

with electric charge-1 and magnetic charge-N matters. Then, theS duality of theU(1) gauge
theory transforms this model with electric charge-1 and magnetic charge-N matters into the
original Cardy-Rabinovici model. For the couplingτ, the rescalinga → a/N makesτ →
τ/N2, and theS transformation6 makesτ/N2 → −1/τ = S(τ). To sum up, we obtain the
S-duality: CRτ/Z[1]

N ≃ CRS(τ). The prefactor of the right-hand side of (10) arises from the
rescaling of the continuum partδa′ and theS-transformation as the Witten's computation
[11]. For details, see [8].

5Here, for simplicity, we assume that the homology of the spacetime manifoldH∗(X; Z) has no torsion.
6Note that the complex couplingτ = θ

2π + i 2π
Ng2

is different from the usual complex coupling of the Maxwell
theory by 1/N factor.
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For nonzerop, the discrete theta terme
iNp
4π

R
X b∧b can be written ase

i p
4πN

R
X da′∧da′ . On the

other hand, the theta term fora becomese
iNθ
4π

R
X(da+b)∧(da+b) = e

iθ
4πN

R
X da′∧da′ . Hence, stacking

the discrete theta terme
iNp
4π

R
X b∧b corresponds to the shift ofθ: θ → θ + 2πp in theZ[1]

N -gauged
theory. This implies the desired duality (9).

Following the construction of the Kramers-Wannier duality defect, we can construct a
topological defect in the Cardy-Rabinovici model at a self-dual coupling by the half-space
gauging.

As the simplest example, let us considerS defect7, which can be constructed atτ = i,
where the invariance underZ[1]

N -gauging holds: CRτ=i/Z[1]
N ≃ CRτ=i . This defectD(M)

satis�es the following Kramers-Wannier-like fusion rules

D(M) ×D(M) = C(M)
1
N

X

Σ∈H2(M;ZN)

η(Σ), D(M) × η(Σ) = η(Σ) ×D(M) = D(M), (11)

whereC(M) is the charge conjugation defect,η(Σ) is the co-dimension-2 defect of theZ[1]
N

symmetry, andΣ is two-cycle onM. The charge conjugation defect appears because of
S2 = C. In addition to the charge conjugation, the fusionD(M) × D(M) leavesZ[1]

N gauging
on M, which is the condensation defect1

N

P
Σ∈H2(M;ZN) η(Σ). Due to the half-space gauging

construction, the duality defect absorbs theZ[1]
N generatorη(Σ). These fusion rules are not

group-like, so the duality defect represents a non-invertible symmetry.
As a more interesting example, we consider theS T−1 defect atτ = τ∗ = e

iπ
3 : S T−1(τ∗) =

τ∗. Re�ecting the triality (S T−1)3 = C, the fusion rules are8,

D(M) ×D(M) ×D(M) ∝ C(M)
X

Σ∈H2(M;ZN)

η(Σ), D(M) × η(Σ) = η(Σ) ×D(M) = D(M),

(12)

We can construct various noninvertible defects from theS L(2,Z) “duality” by using the
(9) repeatedly.

3.2 Mixed gravitational anomaly and constraint on dynamics

For theS T−1 defect, the underlying self-duality relation reads, from (10),

Zτ∗
CR/(Z[1]

N )−1
[B] = N

χ(X)
2 e−

πi
3 σ(X) Zτ∗CR[B]. (13)

This relation, especially the nontrivial phase e− πi3 σ(X), excludes the trivially gapped vacuum.
This phase can be seen as a mixed gravitational anomaly of the non-invertible symmetry.

If the vacuum is trivially gapped, the response to a background �eld should be de-
scribed by an SPT phase. It is known that aZ[1]

N SPT phase is classi�ed byZk[B] =
exp

�
i Nk

4π

R
X

B∧ B
�
, k = 0, · · · ,N − 1. By a direct computation on a 4d manifold with a

nontrivial signature, say a K3 surface, we can verify that none of theZ[1]
N SPT phases can

satisfy the self-duality (13) [8].
Lastly, we note how the phase diagram (Fig. 1) can satisfy this constraint. Natural

guesses for low-energy theories of Higgs, monopole-condensed, and dyon-condensed phases
are the level-N BF theoryZHiggs[B] =

R
DaDbexp

�
iN
2π

R
b∧ (da+ B)

�
and two SPT phases

7For Maxwell theory, this type of defects is studied in [6].
8Here, for simplicity, we assume thatH∗(M; Z) is torsion-free. For a general case, there is an interesting subtlety

to these fusion rules. See Ref. [10].
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Zmon[B] = 1, Zdyon[B] = exp
�

iN
4π

R
B∧ B

�
. Since the pointτ = τ∗ in Fig. 1 is the triple

point of the Higgs, monopole-condensed, and dyon-condensed phases, we can speculate that
a combination of them can match the anomaly (13). Indeed, the following combination

Zτ∗CR[B] = Zmon[B] + e
πi
3 σ(X)Zdyon[B] + N−

χ(X)
2 e

2πi
3 σ(X)ZHiggs[B], (14)

satis�es (13). Therefore, the obtained constraint is compatible with the conjectured phase
diagram (Fig. 1).

Similar anomaly constraints and consistencies can be observed at other points, e.g.,τ =
√

3+i
2
√

3
which is a �xed point of theS T−1S T2S transformation and is a triple point where the

monopole (n,m) = (0,1) condensed phase, the dyon (n,m) = (−1,1) condensed phase, and
the oblique con�nement phase with exotic dyon (n,m) = (−1,2) condensation meet in Fig. 1.

4 Summary

As a new tool for studying QFTs, the generalization of symmetries has attracted more at-
tention in recent years. We have considered a new type of symmetries with non-group-like
algebra in the Cardy-Rabinovici model, a toy model for dynamics related to theθ angle.

Based on a self-duality of the Cardy-Rabinovici model, we have constructed non-
invertible defects and found its mixed gravitational anomaly for some cases, which gives
a constraint on the phase diagram.
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