Neutron-induced inelastic γ-production cross sections on 58,60,64Ni

Marian Boromiza1,*, Adina Olacel1, Catalin Borcea1, Philippe Dessagne2, Greg Henning2, Maëlle Kerveno2, Alexandru Negret1, Markus Nyman3, Andreea Oprea4, and Arjan Plompen4

1Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, 077125 Bucharest-Măgurele, Romania
2Université de Strasbourg, CNRS, IPHC UMR 7178, F − 67000 Strasbourg, France
3University of Helsinki, Department of Chemistry, Helsinki, Finland
4European Commission, Joint Research Centre, Retieseweg 111, B − 2440 Geel, Belgium

Abstract. This paper reports partial results of a (n, n'\gamma) measurement on nickel. The inelastic channel was measured using the Gamma Array for Inelastic Neutron Scattering (GAINS) spectrometer at the 100-m measurement cabin of the Geel Electron Linear Accelerator (GELINA) neutron source of the European Commission’s Joint Research Centre (EC-JRC) in Geel, Belgium. Using $gamma$ spectroscopy, we were able to extract angle-integrated production cross sections for several $gamma$ rays but we report here only the results for the main transition in 58Ni. We discuss however in detail the observed discrepancy between our data and other experiments (especially the work of Voss et al.). We also shortly comment on the quality of the neutron-target optical model potential in describing the inelastic data in this mass region. The calculations were performed using the $tallys$ 1.9 code in the default settings.

1 Introduction

The energy need of our society cannot be overstated and it will very likely increase in the coming decades. Such needs must be mitigated in respect to the many consequences of the energy production sector, with pollution and global warming being the most acute. If one wishes a sustainable development for future generations, finding new, far less polluting, ways for producing energy is paramount for the present century. In this context, nuclear energy seems to be a feasible pillar on the medium to long term if the current nuclear technology is improved in terms of safety, nuclear waste, fuel availability, etc.

Generation IV nuclear reactors should solve many of these issues as they will be able to transmute the minor actinides from the fuel, thus shortening the time nuclear waste remains highly radioactive, while being fuelled by more abundant isotopes (for example 238U or 232Th, see Ref. [1] and the references therein). Another advantage of 238U is given by the fact that the fission cross section on this isotope starts to become relevant only above 1-1.5 MeV incident neutron energy [2] which means that no neutron moderation is needed. Unfortunately, sensitivity studies for Generation IV nuclear facilities show that, for an optimal design, neutron inelastic data with very low uncertainty (typically below 5%) on, in particular, nickel isotopes is required [3]. Providing realizable experimental data with such low uncertainty is very challenging.

Nickel is one of the components of heat- and corrosion-resistant Fe-Cr-Ni steel, a frequently used structural material in all nuclear facilities. It has five stable isotopes: 58Ni is the most abundant [68.077(6)\%] followed by 60Ni [26.223(5)\%], 62Ni [3.634(1)\%], 61Ni [1.139(4)\%] and 64Ni [0.926(6)\%] [4]. This paper presents the results extracted for the main transition in 58Ni (E_{γ}=1454.3 keV) while the data for the other transitions is reported in Ref. [5]. The uncertainty of our data for this transition ranges from around 3%, where the cross sections reaches its maximum value, up to 11% at very high incident energies. We also discuss in detail the possible reasons for the observed discrepancy between our data and the experiment of Voss et al. [6] (see Section 4).

*e-mail: marian.boromiza@nipne.ro
The inelastic angle-integrated et al. natural nickel target with a self-attenuation inside the target (except and 150 [19] and Traiforos and Voss spectroscopy and neu-expectations and neu-lines with very good statistics was very agreeable 238 and Tessler DC440 digitizers with a and neu-experiments could very thick 2.661(21) mg chamber with of 12 bits. For data normalization we employed a fission sampling frequency of 420 MHz and an amplitude range detectors are read out by acquis DC440 digitizers with a sampling frequency of 420 MHz and an amplitude range of 12 bits. For data normalization we employed a fission chamber with 235U deposits [7]. During the experiment, a very thick 2.661(21) mg/cm² natural nickel target with a diameter of 8.23(3) cm was irradiated for a total of around 15 days (after data reduction). Other experimental details can be found in Refs. [8–11].

2 Experimental setup

The (n, n′γ) measurement on nickel was performed using the GAINS spectrometer (see Fig. 1) and a neutron beam provided by the GELINA facility of the EC-JRC. In this type of experiments we employ γ spectroscopy and neutron time of flight techniques to determine the γ and neutron energies, respectively. The 100-m neutron flight path allows us to measure high resolution data and, due to the high efficiency of the large volume HPGe detectors, we can provide very low uncertainty cross section points. The detectors are read out by acquis DC440 digitizers with a sampling frequency of 420 MHz and an amplitude range of 12 bits. For data normalization we employed a fission chamber with 235U deposits [7]. During the experiment, a very thick 2.661(21) mg/cm² natural nickel target with a diameter of 8.23(3) cm was irradiated for a total of around 15 days (after data reduction). Other experimental details can be found in Refs. [8–11].

3 Data analysis procedure

We refer the interested reader to Refs. [10, 12–15] for details regarding the data analysis procedure of our experiments at GAINS. Here we only mention that the primary extracted quantity is the differential cross section (that is, the γ-production cross section at those angles were we placed the detectors: 110° and 150°). For cross-checks we also extract the cross section at 125°. The 110° and 150° measurement angles are the nodes of the fourth order Legendre polynomials. This allows us to angle integrate the differential cross sections by making use of the Gaussian quadrature method [12, 13].

4 Results and discussion

The first and second excited levels in 58Ni - part of the ground state rotational band - decay through relatively intense transitions, of 1454.2 and 1004.8 keV, which therefore collect a significant part of the inelastic strength. Detecting these two γ lines with very good statistics was very important during the experiment. We report here however only the cross section for the main transition in 58Ni (displayed in Fig. 2 together with other previously published results). Among the previously measured data at other facilities, Voss et al. [6] reported the most extended data set with good incident energy resolution up to around 14 MeV. At a first glance, our data and those of Voss et al. agree very well in terms of shape but with a 20-30% difference in absolute values. One can notice that this difference actually becomes smaller at very high energies pointing to a combination of energy- and non-energy-dependent factors that might explain the discrepancy (possible candidates are discussed below). This discrepancy is consistently present for the other 58Ni and even 60Ni transitions (see Ref. [5]). The other values plotted in Fig. 2 are in agreement with our experimental data even though Bazavov et al. [16], Konobeckii et al. [17], Nishimura et al. [18], Broder et al. [19] and Traiforos et al. [20] only reported cross section points close to the threshold region, below 4 MeV. The same figure also displays one more extended data set, measured at GELINA with very high resolution (200 m flight path) [21], which agrees well with our data.

It is important to note that a 20–40% difference between GELINA data and those of Voss et al. was also observed in three other experiments that reported inelastic cross sections on 52Cr [22], 238U [23] and 56Fe [24] (see Fig. 3). The Mihailescu et al. and Negret et al. experiments were performed at GELINA using the same fission chamber, a similar HPGe-based setup and data analysis procedure to the ones employed in the present work while Kerveno et al. made use of a different setup and fission chamber. Interestingly, the only other data set which agrees very well with Voss et al. is the one of Tessler et al. [25] even though the authors reported only 3 cross section points with relatively high uncertainties (see Fig. 2). To understand these discrepancies, we list the most relevant characteristics of the Voss et al. and Tessler et al. experiments [6, 25]: a) relatively large 60Ni targets were used: ring-shaped with an inner diameter of 120 mm, outer diameter of 254 mm, and a 9.4 mm thickness (Voss et al.), and a cylinder with a diameter of 25.4 mm and a hight of 25.4 mm (Tessler et al.), b) the inelastic γ rays were detected using a single Ge(Li) detector placed at 125° or 55° (therefore, angle-integrated data was extracted by multiplying the differential cross sections with 4π), c) the neutron flux monitoring was performed using a calibrated proton recoil detector (scintillation counter), d) missing corrections for neutron multiple scattering, neutron beam attenuation and γ self-attenuation inside the target (except for the Tessler et al. data which was corrected for the latter effect).

Our data are normalized to the 235U(n,f) standard cross section which is a different procedure than that employed by Refs. [6, 25]. The complexity of the flux measurement in the Tessler et al. and Voss et al. experiments could certainly generate part of the difference in absolute values seen in Fig. 2. Other important factors are given by the
The neutron inelastic 56 calls during the et al. parameter employed by the exci-
et al. [22]. The figure in panel a) was taken from [24], Voss [32].

E =660.11 keV
E =635.9 keV

cross section values shown in Fig. 2 due to Negret [23], Negret et al. [24] and Mihailescu et al. [22]. The figure in panel a) was taken from Ref. [23] while the remaining data sets displayed here were taken from EXFOR [32].

mentioned missing corrections (see above). Ref. [6] states that the multiple scattering versus beam attenuation corrections (both around 10-20%) cancel each other while the γ self-attenuation correction should increase the reported cross sections by 20-25%.

To check - as a rough estimate - if this is indeed the case, we calculated the γ-ray attenuation in nickel and got a 21-28% absorption (for Eγ = 1.5 MeV and an effective target thickness of 5-7 mm). A 21-28% increase of the Voss et al. cross section values shown in Fig. 2 due to γ self-attenuation corrections would greatly improve the agreement with our data.

Figure 2 also compares our data with theoretical calculations provided by the TALYS 1.9-default code [26]. The theoretical curve is able to describe well our cross section values, except for the underestimation in the 3-8 MeV region. The same disagreement can also be observed for the secondary transitions in 58Ni, and even for 60Ni (see Ref. [5]). This indicates, among others, the rather poor quality of the neutron-target optical model potential in this mass region. Other causes for this disagreement relate to other reaction ingredients that TALYS 1.9 calls during the calculation: nuclear structure information, modeling of the pre-equilibrium emission, the role played by the deformation within direct/coupled channels calculations, etc.

The authors of Ref. [27] argue the impact of nuclear structure information imported from RIPL [28] by reaction codes, showcasing the relevant effects of the branching ratio inaccuracies on the predicted cross sections (we calculate level and total inelastic cross sections making use of available level scheme information on the target nucleus). Therefore, such inaccuracies or missing structure information (leading the reaction codes to make un-

mental nickel isotopes: 58Ni, 60Ni and 64Ni. We reported here however high resolution, low uncertainty data only for the main transition in 58Ni with Eγ =1454.3 keV. The uncertainty of our data for this transition ranges from around 3%, where the cross sections reaches its maximum value, to 11% at very high incident energies. Our results compare very well with previous experiments except for the data of Voss et al. [6] and Tessler et al. [25] which display a similar shape but different absolute values. This is also the case for three other nuclei: 52Cr [22], 238U [23] and 56Fe [24].
We discuss in detail these discrepancies by comparing the experimental techniques and data analysis procedures in all the mentioned experiments. We conclude that, most likely, the cause for the discrepant values is given by the neutron flux normalisation (proton recoil detector versus fission chamber) and the lack of \(\gamma \) self-attenuation corrections in the Voss et al. experiment. We also comment on the rather poor quality of the default neutron-target optical model potential implemented in \(\text{M} \text{CCD} \) for \(\text{Ni} \) and \(\text{Ni} \), and on possible ways to improve these theoretical predictions.

This work was supported by the Romanian Ministry of Research, Innovation and Digitization, CNCS/CCCDI-UERFIIICDI, through projects no. PN-III-P4-ID-PCE-2016-0002 and PN-III-P1-1.1-PD-2021-0207, and by the Euratom research and training programme 2014-2018 under grant agreement No. 847552 (SANDA). We would like to thank the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) for providing financial support for sample acquisition under the agreements JRC-3465 and IRSN-LS20361.

References

[21] L. Ohal et al., Data privately communicated to the authors (Unpublished).