Prediction of prompt neutron spectra of the photon induced reactions on 238U and 232Th targets at incident energies from 4 to 22 MeV

Anabella Tudora1, Dan Mihai Filipescu2, and Ioana Gheorghe2

1University of Bucharest, Faculty of Physics, str. Atomistilor 405, Bucharest-Magurele, Jud. Ilfov, 077125, Romania
2Institute for Nuclear Physics and Engineering Horia Hulubei, str. Reactorului 30, Magurele, Jud. Ilfov, 077125, Romania

Abstract. The processing of experimental data for the photon induced reactions on 238U and 232Th investigated by quasi-monochromatic γ-ray beams (produced in Laser Compton scattering at the NewSUBARU facility) needs the prediction of prompt neutron spectra. They are obtained using reliable models and systematics, i.e. the most employed and well validated approach of the most probable fragmentation with input parameters provided by a recent systematic and fission chance probabilities based on nuclear reaction calculations performed with the EMPIRE code.

1 Introduction

The recent experimental investigations of photon-induced reactions on 238U and 232Th performed at the NewSUBARU laser Compton-scattering γ-ray source have brought the need for reliable predictions of photo-fission prompt neutron spectra. The measurements made use of a high-and-flat neutron efficiency detection system originally designed for such reactions with typical evaporation neutron emission spectra up to 5 MeV. Dedicated predictions of prompt neutron spectra of photon-induced fission reactions will enable the neutron detection efficiency characterization for realistic fission spectra extending well above the (γ,xn) photo-neutron energy range.

Unfortunately such prompt neutron spectra (PNS) cannot be calculated in the frame of refined prompt emission models (e.g. FIFRELIN, CGMF, PbP, DSE, HF3D etc.) because any information concerning the fission fragment distributions Y(A,TKE) (necessary as input in these models) is missing in the case of photo-fission fragment distributions $Y(A,TKE)$ (necessary as input in the prompt emission calculations) is impossible. Consequently the only way remains the PNS prediction for the $\gamma + ^{238}$U and $\gamma + ^{232}$Th reactions by using a most probable fragmentation approach with input parameters provided by recent systematics. At higher incident photon energies, where multiple fission chances are involved, the fission chance probabilities (necessary in the prompt emission calculations mentioned above), which are expressed as fission cross-section ratios, are based on the results of nuclear reaction codes (such as EMPIRE, TALYS, GNASH).

2 Calculation of prompt neutron spectra and input parameters

The total PNS in the photon induced fission of 238U and 232Th is calculated as a sum of total spectra of prompt neutrons emitted by the fission fragments $N_{\nu f}(E)$ and of pre-fission neutrons $N_{\nu \text{prefiss}}(E)$ (i.e. neutrons emitted by each compound nucleus prior to fission, in the case of multiple fission chances) [1]:

$$ N_{\nu f}(E) = \sum_{i=2}^{8} PF_i \left< \nu_f > N_i(E) / \left< \nu > \right>_{\text{tot}} \right. \hspace{1cm} (1) $$

$$ N_{\nu \text{prefiss}}(E) = \sum_{i=2}^{8} PF_i \left(\sum_{j=1}^{i-1} \phi_{\nu f, j}(E) / \left< \nu > \right>_{\text{tot}} \right) \hspace{1cm} (2) $$

in which the index i denotes the fission chance. $N_i(E)$ is the prompt fission neutron spectrum (PFNS) corresponding to each fissioning compound nucleus, $\phi_{\nu f, j}(E)$ is the evaporation spectrum of each pre-fission neutron. The total average prompt neutron multiplicity $\left< \nu > \right>_{\text{tot}}$ is the sum of total multiplicities of prompt neutrons emitted by fission fragments $\left< \nu > \right>_{\nu f}$ and of pre-fission neutrons $\left< \nu > \right>_{\nu \text{prefiss}}$ [1]:

$$ \left< \nu > \right>_{\nu f} = \sum_{i=2}^{8} PF_i \left< \nu_f > / \sum_{i=2}^{8} PF_i \right. \hspace{1cm} (3) $$

$$ \left< \nu > \right>_{\nu \text{prefiss}} = \sum_{i=2}^{8} (i-1) PF_i / \sum_{i=2}^{8} PF_i \hspace{1cm} (4) $$

PF_i entering Eqs.(1-4) are the fission chance probabilities taken as fission cross-section ratios:

$$ PF_i = RPF_i = \sigma_{\gamma,i,f} / \sigma_{\gamma,f} \hspace{1cm} (5) $$

in which $\sigma_{\gamma,f}$ is the total fission cross-section (as a sum of fission chance cross-sections).

$N_i(E)$ entering Eq.(1) is calculated in the frame of the most probable fragmentation approach either in its...
The values of the input parameters <TKE> and the average nuclear temperature of initial fragments <Ti> corresponding to each fissioning nucleus are obtained either as:

\[<\text{TKE}> = X_F - <Q-TKE> <\text{MEV}>(X_F) \] (upper part) and

\[<\text{Q-TKE}>(X_F) \] (lower part).

where \(E^* \) is the excitation energy of the fissioning nucleus. In Eq.(6) the Q-value systematic as a function of the fissility parameter (XF) reported in Ref.[5] as follows.

The average total excitation energy \(<\text{TKE}> \) of fully accelerated fission fragments corresponding to each fissioning compound nucleus is obtained either as:

\[<\text{TKE}>(X_F) = <Q>TKE>(X_F) + E^- \] (6)

or

\[<\text{TKE}>(X_F) = <Q>TKE>(X_F) + E^- \] (7)

where \(E^* \) is the excitation energy of the fissioning nucleus. In Eq.(6) the Q-value systematic as a function of the fissility parameter (XF) reported Ref.[5] (given in the upper part of Fig.1) and a systematic of <TKE> (usually that of Viola [6]) are used. In Eq.(7) the systematic of the Q-value minus TKE <Q-TKE> as a function of XF from Ref.[5] (plotted in the lower part of Fig.1) is employed.

Once \(<\text{TKE}> \) is calculated, the average excitation energies of fully accelerated fragments \(<E^*><L,H> \) (corresponding to each fissioning nucleus) are obtained from the systematic of the ratios \(<E^*><L,H>/<\text{TKE}>> \) as a function of XF reported in Ref.[5], too.

Using these average excitation energies of fully accelerated fragments the average temperatures of initial light and heavy fragments \(<\text{Ti}><L,H> \) are obtained from the systematic of Ref.[5] given in Fig.2.

3 Preliminary predicted results

Examples of predicted PNS at incident photon energies where only one fission chance is involved are given in Fig.3 for \(^{238}\text{U}(\gamma,f) \) and Fig.4 for \(^{232}\text{Th}(\gamma,f) \). These PNS results are plotted in the usual representation as ratios to a Maxwellian spectrum with the \(T_M \) parameter value indicated in the legend of the axis.
Another example is that of the predicted total prompt neutron multiplicity $\langle \nu \rangle_{\text{tot}}$ which is illustrated in Fig.5 together with its components $\langle \nu \rangle_{\text{PF}}$ and $\langle \nu \rangle_{\text{pref}}$ for the $\gamma + ^{238}\text{U}$ reaction at incident photon energies from 4 to 22 MeV.

The fission chance probabilities (taken as fission cross-section ratios according to Eq.(5)) which are used in the present calculations (at incident photon energies where multiple fission chances are involved) are obtained from the fission cross-sections provided by the nuclear reaction code EMPIRE with the input parameters of Ref.[7]. These fission cross sections are illustrated in Fig.6 for the case of $\gamma + ^{238}\text{U}$.

Consequently the predicted PNS are expected to be successfully used in the processing of experimental data obtained from the photon induced reactions on ^{238}U and ^{232}Th performed at the NewSUBARU facility (by using quasi-monochromatic γ-ray beams produced in Laser Compton scattering).

This work was done in the frame of the Romanian Program PN-III-P-5.1 ELI-Ro, Project No.14.

References

4 Conclusions

The present prediction is based on reliable models and systematics, i.e.,

i) the most employed and well validated approach of the most probable fragmentation (i.e. the Los Alamos model without or with sequential emission [2, 3]) using

ii) input parameters provided by the recent systematic of Ref.[5] and

iii) fission chance probabilities based on nuclear reaction calculations performed with the EMPIRE code [7].