Femtosecond laser rapid prototyping and characterization of microfluidic device for particles sorting

Annalisa P., Isabella P., Francesco P., Caterina P., Roberto P., Antonio P.

Abstract. Microfluidic devices are attracting growing interest because they are compact platforms the capabilities of a stand biological laboratory. Polymeric materials, such as PMMA, are attracting growing interest because they are much cheaper although keeping good mechanical strength, optical transparency, chemical stability and biocompatibility. Various techniques can be employed to fabricate polymeric LOC devices. Among them, the fs-laser technology can successfully be employed especially when customization or rapid design modifications are required. Here, we exploited the fs-laser 3D capabilities for fabricating a polymeric side-based cell sorter. The reliability of the LOC was tested through fluorescent polystyrene beads.

1 Introduction

Lab-on-a-Chip (LOC) are portable and compact microfluidic devices capable to process small amounts of biological samples with high precision and sensitivity. Potentially, such devices can integrate in small and compact platforms the capabilities of a standard biological laboratory. Polymeric materials, such as PMMA, are attracting growing interest because they are much cheaper although keeping good mechanical strength, optical transparency, chemical stability and biocompatibility. Various techniques can be employed to fabricate polymeric LOC devices. Among them, the fs-laser technology can successfully be employed especially when customization or rapid design modifications are required. Here, we exploited the fs-laser 3D capabilities for fabricating a polymeric side-based cell sorter. The reliability of the LOC was tested through fluorescent polystyrene beads.

2 Materials and methods

The device was fabricated on PMMA substrates (Vistacryl CQ; Vista Optics, Ltd., UK) with optical surface quality (measured surface roughness Ra < 2 nm). The plates were square, with a length and width of 30 mm and a thickness of 5 mm for the upper layer and 1 mm for the bottom one. The fabrication setup is in Fig. 1 and it is based on a 1030 nm ultrafast laser system (Pharos, Light Conversion) linearly polarized, with a pulse duration of 190 fs. The beam was focused and moved onto the polymeric surface through a galvo-scan head (IntelliSCANNse 14; SCAN-LAB Germany) equipped with a telecentric lens with a focal length of 100 mm, providing a spot diameter at the focusing point of about 25 μm. The device was quickly assembled following the procedure described in [1] and based on a solvent-assisted method. The microfluidic characterization was performed by injecting in the channel diluted fluorescence beads through a syringe pump system and viewing the fluorescence through a microscopy (LEICA DMI3000M).

3 Design of the microfluidic device

In Fig. 2 (a) the design of the cell sorter is reported. It is composed of a 6-loop Archimedean spiral microchannel,
with 1 inlet and 2 outlets. The bifurcation was designed for continuous filtration of two different particle sizes, namely 6 µm and 15 µm. To enhance the sorting efficiency, the channel has a trapezoidal shape [2], whose dimensions are in Fig 2 (b).

For continuous size-based cell sorting the inertial forces inside trapezoidal microchannel are exploited [3]. Spiral microchannel can introduce continuous and stable Dean vortices that apply drag force on microparticles leading to particle focusing along the channel profile depending on the particle size [4].

3 Results

A preliminary study of the laser parameters able to produce the layout and dimensions in Fig 2 (b) has been carried out. Particular attention was paid to the quality of the edges, which are required to be as smooth as possible to avoid problems when sealing the device. The profile of the trapezoidal channel is reported in Fig 3.

The device was then assembled and connected to the microfluidic pump. The sealing was proved up to 320 μL/min. The focusing of particles with diameter of 6 µm and 15 µm was studied by varying the flow rate. Figure 4 shows the flow traces at 15 μL/min acquired with 15 μm polystyrene beads. Here, the migration of the microspheres towards the external wall of the channel can be observed, as indicated by the small arrows, as the number of coils increases, proving the reliability of the fs-laser fabricated LOC.

Acknowledgements

This research was funded by the Italian Ministry of Education, University and Research (MIUR) within the projects TITAN — Nanotecnologie per l’immunoterapia dei tumori [PON ARS01_00906] and EXTREME [PON ARS01_00849].

References


2. Reza Moloudi; Steve Oh; Chun Yang; Majid Ebrahimi Warkiani; May Win Naing. Microfluidics and Nanofluidics 2018, 22, doi:10.1007/978-981-13-6229-3_5.


Fig. 2. Sketches of the cell sorter device and of the profile of the microchannel.

Fig. 3. Trapezoidal profile of the canal reconstructed using optical profiler.

Fig. 4. Microscope image of the 15 µm beads flowing in the spiral microchannel (15 μL/min).