Laser assisted processing of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films for infrared photonics

Jan Mrázek*, Ondřej Podražký, Jana Proboštová, Petr Vařák, Ivo Bartoň and Yauhen Baravets

Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, Prague 8, 182 51, Czech Republic

Abstract. In this contribution we present a versatile approach to the laser assisted treatment for the preparation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ thin films. The presented approach can be used to prepare active optical films for infrared photonics. The elaborated approach can be used to prepare active optical films for infrared photonics. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films. The amorphous thin films were prepared by the sol-gel method followed by a dip coating process and densified in a rapid thermal annealing furnace. The laser irradiation induced a crystallization process resulting in the formation of nanocrystalline (Ho$_{0.05}$Y$_{0.95}$)$_2$Ti$_2$O$_7$ films.

1 Introduction

2 Experimental

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).
3 Results and discussion

![Fig. 1](image1.png)

Fig. 1. XRD patterns of the densified film and film irradiated by CO\(_2\) laser for 120 s.

![Fig. 2](image2.png)

Fig. 2. Transmission spectra of the densified film and film irradiated by CO\(_2\) laser for 120 s.

![Fig. 3](image3.png)

Fig. 3. Steady state luminescence spectrum of (Ho\(^{3+}\))TiO\(_2\) after CO\(_2\) laser assisted treatment with excitation at 450 nm and slit: 16 nm.

3 Conclusions

This work was supported by the Czech Science Foundation, contract No 22-17604S.

References

[27]
[73]
[78]
[16]