Unexpected phase-locked Brillouin Kerr Frequency comb in fiber Fabry Perot resonators

Thomas Bunel1, Matteo Conforti1, Julien Luneau, Antonin Moreau, Arnaud Fernandez, Olivier Llopis1, Auro M. Pereg1, and Arnaud Mussot1

1Université de Lille, CNRS, UMR 8523-PhLAM–Physique des Lasers Atomes et Molecules, F-59000 Lille, France
2Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
3LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue de Colonel Roche, 31031 Toulouse, France
4Aston Institute of Photonic Technologies, Aston University, Birmingham, UK

Abstract. We report the observation of a stable and broadband optical frequency comb in a high-Q fiber Fabry Perot resonator. We evidence it arises from an unexpected mode-locking phenomena.

INTRODUCTION

Stimulated Brillouin scattering (SBS) is the first nonlinear effect to be triggered when a powerful continuous wave laser interacts with a nonlinear waveguide. This effect is further exacerbated in resonators due to the multiple round trips in the cavity. SBS has proven to be extremely interesting for building ultra-stable microwave photonic synthesizers [1], to trigger broadband cavity solitons [2], or to balance thermo-optical effects to obtain ultra-stable sources [3]. Whatever the cavity architecture, the only requirement is to obtain a spectral overlap between the SBS gain ($\nu_B = 10\, \text{GHz}$, $\Delta \nu = 50\, \text{MHz}$), and the cavity resonances. This condition is automatically verified in fiber ring cavities, which have free spectral ranges (FSRs) typically between 1 and 100 MHz, or can be met by fine-tuning the cavity lengths in microresonators with FSRs in the GHz range [2-3]. In this paper we evidence an original mode-locking phenomena to generate a stable Brillouin Kerr frequency comb in fiber Fabry Perot resonators.

RESULTS

The surprising feature of our work is illustrated in Fig. 1 (a). While there is a spectral overlap between the 8th cavity resonance (dashed lines) and the SBS gain curve (red curve) at 9.416 GHz, we observed a Brillouin Kerr frequency comb with a line-to-line spacing equals to 10.593 GHz (exactly 9 times the cavity FSR, blue line in Fig. 1 (a)) where there is no spectral overlap. The cavity is pumped by an ultra-narrow CW laser of 1.3 W. It is swept from blue to red to reach a cavity detuning of $\Delta = -0.0891$ rad, in order to jump onto the upper branch of the cavity CW response. In the early steps of the process, a Stokes band at 10.593 GHz (9 times the cavity FSR) is generated, and many others through four-wave mixing processes cascade (Fig. 1 (c)). Finally, a broadband frequency comb of 2 THz (Fig. 1 (b) and (c)) is obtained corresponding to a stable pulse train (Fig. 1 (d)). Numerical simulations, including forward and backward fields [5], without any fitting parameters reproduce perfectly these experimental observations (Fig. 1 (e)-(g)).

We explain this unexpected feature by performing a linear stability analysis of a meanfield reduction of the governing equations. We found a maximum of the parametric gain exactly at 10.593 GHz, revealing the...
parametric origin of the Stokes band at this unexpected position.

CONCLUSION

To conclude, we discovered and explained a new nonlinear mechanism in fiber Fabry Perot cavities. It enables the generation of phase-locked stable Brillouin Kerr frequency combs which could find great interest in microwave photonic synthesizers.

References