Populating α-unbound states in 16O via 19F($p, \alpha\gamma$)16O reaction

V.G. Távora1,*, O. Tengblad1, M.J.G. Borge1, J.A. Briz1,2, D. Fernandez Ruiz1,2, E.A.M. Jensen3, A.N. Nerio1,2, and A. Perea3

1Instituto de Estructura de la Materia, CISC, Serrano 113bis, E-28006 Madrid, Spain
2Grupo de Física Nuclear, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
3Department of Physics and Astronomy, University of Aarhus, DK-8000, Aarhus, Denmark

Abstract. The 12C(α, γ)16O reaction is important in the production of universal 16O, but its cross-section at the relevant energies of static helium burning is complex and uncertain. The total cross-section originates from a sum of resonance tails and direct captures, making the contributions of sub-threshold states difficult to estimate. One proposed method to estimate these contributions involves determining relevant reduced α-widths of the sub-threshold states through indirect measurements. Therefore, 19F($p, \alpha\gamma$)16O reaction was used to populate α-unbound states in 16O using a 2.6 MeV proton beam on a CaF_2 target. A detection system consisting of single and telescope configurations of Si detectors was used to detect 2α-particles and a 13C particle in coincidence. Scintillator detectors were included in the setup to study the de-excitation of the states populated in 16O to the ground state. Under good event conditions a preliminary identification of the particles detected has been conducted.

1 Introduction: 12C(α, γ)16O key reaction

One of the reactions in Nuclear Astrophysics that requires a better understanding is 12C(α, γ)16O. The reason for this is both, the unmitigated importance of the reaction as it is involved in the production of universal 16O, and the complexity of its cross section at the relevant energies of static helium burning (300 keV).

As far as the cross-section is concerned the uncertainty is still undesirably large. As a consequence of the fact that, in the energy region of interest, there is no state of natural parity in 16O near the α-threshold to serve as resonance for radiative capture, the total cross section originates from a sum of resonance tails and direct captures, both, to the ground and excited bound states of 16O. Among the resonance tails contributing are two bound sub-threshold states, i.e., the 1^- state of -45 keV and the 2^+ state of -200 keV below the $\alpha + ^{12}$C threshold [1]. Fig. 1 provides a schematic representation of the 12C(α, γ)16O reaction.

![Figure 1](https://example.com/figure1.png)

Figure 1. Schematic representation of 12C(α, γ)16O reaction.

One of the methods to estimate these contributions consist in determining the reduced α-widths of the sub-threshold states by indirect measurements, that are more sensitive to this width than the direct radiative capture measurement. Therefore, the 19F($p, \alpha\gamma$)16O reaction has been used for the purpose of populating α-unbound states in 16O (Fig. 2) [2].

![Figure 2](https://example.com/figure2.png)

Figure 2. Population of unbound states on 16O by 19F($p, \alpha\gamma$)16O and their possible decay.

2 Experimental Methodology

In order to properly explore the excitation scheme of 16O, the detection of 2α-particles and a 12C particle in coincidence is required for above threshold levels as well as the de-excitation γ-rays are relevant for those sub-threshold levels.
A study of the \(^{19}F(p, \alpha\gamma)\)\(^{16}\)O reaction has been performed at CMAM (Centre for Micro Analysis of Materials) facility (Madrid, Spain), using a 2.6 MeV proton beam, that impacts on a CaF\(_2\) target with a thickness of 0.4 \(\mu\)m on 0.08 \(\mu\)m of Carbon backing.

The detection system (Fig. 3) consist of 14 5x5 cm\(^2\) divided in 2x2 silicon detectors (Si-Ball)[3] and 4 telescopes \(\Delta E-E\) consisting of a 5x5 cm\(^2\) Double-Sided Stripped Silicon Detector (DSSD) as \(\Delta E\) detector and non-segmented silicon detectors (PAD) as E detector. DSSD detector has 16x16 strips, which means they worked as a set of 256 pixels.

The Si-Ball was used in forward angles with respect to the target since it offers a good angular coverage and the possibility of avoiding angles around 0º-30º where the Rutherford elastic scattering dominates. Also at forward angles, two of the telescopes were placed following a configuration that allow the scattered protons from the beam pass through \(\Delta E\) and stop in E detector while all the \(\alpha\)-particles, \(^{16}\)O and \(^{12}\)C ions are stopped in \(\Delta E\) detector. At backwards angles, two telescopes were placed, in this case the protons and \(\alpha_0\) traverse \(\Delta E\) and stops in E detector while the rest of the particles emitted in the reaction reaction stops in \(\Delta E\) detector. Thickness of the detectors used is given in Fig. 3.

In addition, 8 GAGG scintillator detectors and CEPA4 phoswich [4] detector were included in the setup in order to study the de-excitation of the excited states populated in \(^{16}\)O to the ground state. Fig. 3 shows the setup used.

![Figure 3. Scheme of the setup used used to measure the ejectiles produced in \(^{19}F(p, \alpha\gamma)\)\(^{16}\)O reaction.](image)

3 Analysis procedure

For a single particle detection in DSSD detectors, the junction (P-side) and the ohmic (N-side) is readout separately. For good event these signals correspond to the same deposited energy. Experimentally a certain deviation between both sides is expected so \(|E_p - E_n| \leq 2\sigma\) condition has been included in the data processing, where \(\sigma\) value is obtained from the gaussian fit applied to \(|E_p - E_n|\) distribution for each detector.

Under those conditions Fig. 4 shows a preliminary identification of the \(\alpha\)-particles produced during the experiment as labeled in Fig. 2. The following step will be to remove proton background by anti-coincidence conditions with E detector and study \(\gamma\) emissions in coincidence with \(\alpha\)-particles.

![Figure 4. Preliminary particle identification as identified for a strip placed at \(\theta = 60^\circ\) in forward telescopes where we can see \(\alpha\)-particles produced due to \(^{19}F(p, \alpha\gamma)\)\(^{16}\)O reaction when populating different levels in \(^{16}\)O, as well as elastic scattered protons that come from the beam with an energy of ~ 2.46 MeV after being scattered and pass through \(\Delta E\), depositing ~ 1.97 MeV.](image)

Acknowledgements

We acknowledge the funding through the grant MCIN/AEI PID2019-104390GB-I00.

References