Interfering reaction channels observed in the $^2\text{H}(^8\text{He},^4\text{He})^6\text{H}$ reaction studies

I.A. Muzalevskii1,2,2∗, A.A. Bezbakh1,2, E.Yu. Nikolskii1,2, V. Chudoba1,2, A.M. Abakumov2, S.A. Krupko2, S.G. Belogurov2,3, D. Biare2, A.S. Fomichev2,3, E.M. Gazeeva4, A.V. Gorshkov5, L.V. Grigorenko2,3,4, G. Kaminski2, O. Kiselev6, D.A. Kostyleva4, B. Mauvey2,3, I. Mukha4, A.M. Quynh3,5, S.I. Sidorchuk2,3, N.B. Shulgina1,10, R.S. Slepnev2, A. Swiercz2, G.M. Ter-Akopian2,3, R. Wolski2, and M.V. Zhukov11

1Institute of Physics, Silesian University in Opava, 74601 Opava, Czech Republic
2FLNR Laboratory of Nuclear Reactions, JINR, 141980 Dubna, Russia
3National Research Centre “Kurchatov Institute”, Kurchatov sq. 1, 123182 Moscow, Russia
4National Research Nuclear University “MEPhI”, 115409 Moscow, Russia
5Dubna State University, 141982 Dubna, Russia
6GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
7L.N. Gumilyov Eurasian National University, 010008 Nur-Sultan, Kazakhstan
8Nuclear Research Institute, 670000 Dalat, Vietnam
9Voronezh state university, Universitetskaya sq. 1, 394018 Voronezh
10Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia
11Department of Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden

Abstract. In the recent work [Nikolskii et al., Phys. Rev. C 105, 064605 (2022)] the $^2\text{H}(^8\text{He},^4\text{He})^6\text{H}$ reaction was used for the study of the extreme neutron-rich ^4H isotope. A broad bump was observed in the measured ^4H spectrum interpreted as the broad overlapping ground and some low-lying states of this nuclide. There could be certain doubts in the interpretation of this work: in conditions of the limited phase space it is not impossible that the structure in the missing mass spectrum of ^4H is actually induced by the resonant states populated by some other channels opened in the $^8\text{He}+^2\text{H}$ interaction. This work provides a body of the evidence for the correct channel identification and for the absence of the ^4H resonances at energy $E_F = 0 - 3.5$ MeV above the $^3\text{H}+3\text{n}$ decay threshold. In addition the first strong experimental evidence is given that the $^6\text{H} \rightarrow ^3\text{H}+n \rightarrow ^3\text{H}+3\text{n}$ sequential decay is the dominating ^6H decay channel.

1 Introduction

So far there is no answer to a fundamental question about the limits of the nuclear structure defined by the border between the unbound nuclei, still showing their resonance mechanisms of their ground and excited states. However, the detection of the same products as those of the missing mass (MM) spectrum of ^6H reported in work [1–5] is characterized by the absence of any distinct narrow peak, and the observed resonance state is relatively wide and implicit. The latter leads to the question of whether the obtained structure could be formed by the final-state interaction appearing in some other reaction channels which are not so exotic and may occur with higher probabilities.

This work is dedicated to the analysis of the diverse reaction channels occurring in the $^8\text{He}+^2\text{H}$ interaction characterized by the detection of the same products as those which were used in Ref. [7] to identify the ^6H population. Such analysis allows one to elucidate the ^6H decay channels and its spectrum nature reported in [7].

2 Experiment

The experiment was performed at the ACCULINNA-2 facility, FLNR, JINR, producing 26 AMeV ^8He beam and focusing it on the cryogenic deuterium target. The detection system was intended to identify the products of the $^2\text{H}(^8\text{He},^4\text{He})^6\text{H}$ reaction and the further $^6\text{H} \rightarrow ^3\text{H}+3\text{n}$ decay. The employed detector system is described in Ref. [7].

For the identification of beam nuclei two plastic scintillators were used, which allowed to measure the energy of the projectile from its time-of-flight (ToF) and identify the isotope by the dE-ToF method. The trajectories of the beam projectiles were tracked by the two pairs of multi-wire proportional chambers. The cryogenic target was filled with deuterium gas at atmospheric pressure and cooled to 27 K. For the detection of the charged reaction products two types of $\Delta E-E$ telescopes were used: the side assembly of the three (20 μm, 1 mm and 1 mm thick) silicon strip detector (SSD) telescopes, and the front tele-

∗e-mail: muzalevsky@jinr.ru
scope made of the 1.5 mm double side SSD coupled to the CsI(Tl) scintillator array. The thin, 20 μm detectors in the side telescopes allowed one to reliably identify and reconstruct the low-energy particles (the recoil 4He nuclei with energy ≥ 5 MeV) emitted from the target in the laboratory angular range between 8° and 26°, see Ref. [8]. The front telescope covered the lab angles $\leq 9^\circ$. It was used to measure the high-energy particles (tritons with energy up to 160 MeV) stopping in the CsI(Tl) crystal. The neutron detection was realized by the ToF stilbene modules [9].

3 “Background” reaction channels for 6H

The first question to be solved is whether the low-energy part of the 6H MM spectrum, see the E_T spectrum in Fig. 1 (a), can be caused by some other reaction mechanism. The 6H events were identified by the detection of the 4He recoil, emerging from the 2H(8He,4He)6H reaction, and the 3H decay product of the 6H decay (also the neutron coincidence information can be used on demand). How can we be sure that these nuclei were produced solely in the channel populating the 3H states, but not in some different reaction channels, where they appear in the 3H+n+n+n+4He group? In reality the final state products of the of the 3He+2H interaction can be partitioned also as $[^1H+n+n]+[^4He+n]$, $[^1H+n]+[^4He+n+n]$ or $[^1H]+[^4He+n+n+n]$. These outcomes correspond to the reactions 2H(8He,5He)5H, 2H(8He,6He+3He)4H, and 2H(8He+3He)4H. In this section, we provide data for the two of these reaction channels and study the correlations of these reaction channels with the obtained low-energy part of the 6H spectrum.

The 7He system was reconstructed assuming that 3H is the nucleus formed immediately in the 2H(8He,3He)4H reaction. The 3He nucleus, detected in the side telescope, was used as the selection gate allowing one to reduce significantly the MM background conditions. Effective method was the so-called “kinematical triangle” selection used in works [6, 7, 10]. This allowed us to localize the background events in the correlation pattern of the kinetic energy of the emitted particles, taken in the center-of-mass frame (CMS) of the decaying system, with the MM energy of the decaying system (in this case it is the correlation of the 4He kinetic energy in the 7He CMS with the 7He MM energy).

To study the correlations with the 7He* MM spectrum we selected the low-energy part of the 6H MM spectrum derived from the 2H(8He,4He)6H reaction data, see the green colored part in Fig. 1 (a). The 7He* MM spectrum is presented in Fig. 1 (b) by the black histogram, while the green-line histogram corresponds to the low energy events in the 6H MM spectrum. One may see that the low-energy events of 6H are spread in the high-energy region of 7He and do not form any pronounced peak. Thus, we conclude that the analyzed range of 6H spectrum is very weakly affected by the final state interactions connected with the possible population of 3He states in the 2H(8He,3He)4H reaction.

The other possible “background” reaction 2H(8He,3He)5H is the result of a triton transfer from 8He. This channel leads to the production of the target-like 5He and beam-like 3H. The latter moves forward and decays into 3H+n+n, which does not allow to measure it directly by our setup. For that reason the 2H(8He,3He)5H reaction examination can be performed only based on the triple 4He-3H-n coincidence events. The 5H spectrum, stemming from the spectrum of Fig. 1 (a) by this coincidence requirement, is shown in Fig. 2 (a). For those events, the recoil 5He invariant mass (IM) spectrum can be reconstructed from the measured 4He and neutron, see the black histogram in Fig. 2 (b). The low-energy 6H events with $E_T < 10$ MeV in the 5He IM distribution are presented with the green histogram in Fig. 2 (b). One may find here the following:

- (i) The 3He g.s. resonance is expected to be found with $E_T(^3$He$) \sim 0.9$ MeV. We really see a strong indication of this resonant state in the derived spectrum of 3He.
- (ii) The 6H low energy events are practically not correlated with the energy range of 3He where the resonant states are known to exist. Thus, the 6H spectrum can not be governed by the final state interactions connected with possible population of 3He in the 2H(8He,3He)5H reaction.

![Figure 1.](https://doi.org/10.1051/epjconf/202329009001)
Figure 2. (a) The 6H MM spectrum based on the 4He-3H-n coincidence events; the part of this spectrum at $E_T < 10$ MeV is given in green color. (b) The 5He invariant mass spectrum constructed from the 4He and neutron momentum vectors in the triple 4He-3H-n coincidence events.

The reconstruction of the 2H(8He,5He)5H reaction requires the detection of $2n$ coincidence events, which is not possible because of the low efficiency of our neutron-wall setup. However, it is quite unexpected that such reaction is important, while the populations of 5He and 7He are found to be negligible.

4 5H populated in the 6H decay

In work [7], the authors showed that the assumption of the 6H→5H(g.s.)+n→3H+$3n$ sequential decay leads to the evidence of an extremely strong “dineutron-type” correlation in the decay of the 5H ground state. Here we apply the reaction-channel test for the decay-mechanism analysis of the 6H spectrum obtained in this work.

Let us assume that in the process of the 8He+2H interaction the 5H resonance is somehow populated. And moreover, we presume that all these events are characterized by the detection of the low-energy 4He appearing in the side telescope in coincidence with the high-energy 3H and neutron hitting the front telescope and stilbene wall, correspondingly. The only two channels satisfying these conditions are:

- The triton transfer reaction: 2H(8He,5He)5H.

4 5H populated in the 6H decay

In work [7], the authors showed that the assumption of the 6H→5H(g.s.)+n→3H+$3n$ sequential decay leads to the evidence of an extremely strong “dineutron-type” correlation in the decay of the 5H ground state. Here we apply the reaction-channel test for the decay-mechanism analysis of the 6H spectrum obtained in this work.

Let us assume that in the process of the 8He+2H interaction the 5H resonance is somehow populated. And moreover, we presume that all these events are characterized by the detection of the low-energy 4He appearing in the side telescope in coincidence with the high-energy 3H and neutron hitting the front telescope and stilbene wall, correspondingly. The only two channels satisfying these conditions are:

- The triton transfer reaction: 2H(8He,5He)5H.

4 5H populated in the 6H decay

In work [7], the authors showed that the assumption of the 6H→5H(g.s.)+n→3H+$3n$ sequential decay leads to the evidence of an extremely strong “dineutron-type” correlation in the decay of the 5H ground state. Here we apply the reaction-channel test for the decay-mechanism analysis of the 6H spectrum obtained in this work.

Let us assume that in the process of the 8He+2H interaction the 5H resonance is somehow populated. And moreover, we presume that all these events are characterized by the detection of the low-energy 4He appearing in the side telescope in coincidence with the high-energy 3H and neutron hitting the front telescope and stilbene wall, correspondingly. The only two channels satisfying these conditions are:

- The triton transfer reaction: 2H(8He,5He)5H.

4 5H populated in the 6H decay

In work [7], the authors showed that the assumption of the 6H→5H(g.s.)+n→3H+$3n$ sequential decay leads to the evidence of an extremely strong “dineutron-type” correlation in the decay of the 5H ground state. Here we apply the reaction-channel test for the decay-mechanism analysis of the 6H spectrum obtained in this work.

Let us assume that in the process of the 8He+2H interaction the 5H resonance is somehow populated. And moreover, we presume that all these events are characterized by the detection of the low-energy 4He appearing in the side telescope in coincidence with the high-energy 3H and neutron hitting the front telescope and stilbene wall, correspondingly. The only two channels satisfying these conditions are:

- The triton transfer reaction: 2H(8He,5He)5H.

4 5H populated in the 6H decay

In work [7], the authors showed that the assumption of the 6H→5H(g.s.)+n→3H+$3n$ sequential decay leads to the evidence of an extremely strong “dineutron-type” correlation in the decay of the 5H ground state. Here we apply the reaction-channel test for the decay-mechanism analysis of the 6H spectrum obtained in this work.

Let us assume that in the process of the 8He+2H interaction the 5H resonance is somehow populated. And moreover, we presume that all these events are characterized by the detection of the low-energy 4He appearing in the side telescope in coincidence with the high-energy 3H and neutron hitting the front telescope and stilbene wall, correspondingly. The only two channels satisfying these conditions are:

- The triton transfer reaction: 2H(8He,5He)5H.

4 5H populated in the 6H decay

In work [7], the authors showed that the assumption of the 6H→5H(g.s.)+n→3H+$3n$ sequential decay leads to the evidence of an extremely strong “dineutron-type” correlation in the decay of the 5H ground state. Here we apply the reaction-channel test for the decay-mechanism analysis of the 6H spectrum obtained in this work.

Let us assume that in the process of the 8He+2H interaction the 5H resonance is somehow populated. And moreover, we presume that all these events are characterized by the detection of the low-energy 4He appearing in the side telescope in coincidence with the high-energy 3H and neutron hitting the front telescope and stilbene wall, correspondingly. The only two channels satisfying these conditions are:

- The triton transfer reaction: 2H(8He,5He)5H.

4 5H populated in the 6H decay

In work [7], the authors showed that the assumption of the 6H→5H(g.s.)+n→3H+$3n$ sequential decay leads to the evidence of an extremely strong “dineutron-type” correlation in the decay of the 5H ground state. Here we apply the reaction-channel test for the decay-mechanism analysis of the 6H spectrum obtained in this work.

Let us assume that in the process of the 8He+2H interaction the 5H resonance is somehow populated. And moreover, we presume that all these events are characterized by the detection of the low-energy 4He appearing in the side telescope in coincidence with the high-energy 3H and neutron hitting the front telescope and stilbene wall, correspondingly. The only two channels satisfying these conditions are:

- The triton transfer reaction: 2H(8He,5He)5H.

4 5H populated in the 6H decay

In work [7], the authors showed that the assumption of the 6H→5H(g.s.)+n→3H+$3n$ sequential decay leads to the evidence of an extremely strong “dineutron-type” correlation in the decay of the 5H ground state. Here we apply the reaction-channel test for the decay-mechanism analysis of the 6H spectrum obtained in this work.

Let us assume that in the process of the 8He+2H interaction the 5H resonance is somehow populated. And moreover, we presume that all these events are characterized by the detection of the low-energy 4He appearing in the side telescope in coincidence with the high-energy 3H and neutron hitting the front telescope and stilbene wall, correspondingly. The only two channels satisfying these conditions are:

- The triton transfer reaction: 2H(8He,5He)5H.

4 5H populated in the 6H decay

In work [7], the authors showed that the assumption of the 6H→5H(g.s.)+n→3H+$3n$ sequential decay leads to the evidence of an extremely strong “dineutron-type” correlation in the decay of the 5H ground state. Here we apply the reaction-channel test for the decay-mechanism analysis of the 6H spectrum obtained in this work.

Let us assume that in the process of the 8He+2H interaction the 5H resonance is somehow populated. And moreover, we presume that all these events are characterized by the detection of the low-energy 4He appearing in the side telescope in coincidence with the high-energy 3H and neutron hitting the front telescope and stilbene wall, correspondingly. The only two channels satisfying these conditions are:

- The triton transfer reaction: 2H(8He,5He)5H.

4 5H populated in the 6H decay

In work [7], the authors showed that the assumption of the 6H→5H(g.s.)+n→3H+$3n$ sequential decay leads to the evidence of an extremely strong “dineutron-type” correlation in the decay of the 5H ground state. Here we apply the reaction-channel test for the decay-mechanism analysis of the 6H spectrum obtained in this work.

Let us assume that in the process of the 8He+2H interaction the 5H resonance is somehow populated. And moreover, we presume that all these events are characterized by the detection of the low-energy 4He appearing in the side telescope in coincidence with the high-energy 3H and neutron hitting the front telescope and stilbene wall, correspondingly. The only two channels satisfying these conditions are:

- The triton transfer reaction: 2H(8He,5He)5H.
5 Results

In this work we investigated the ancillary reaction channels which may impede the interpretation of the $^5H(4^H,3^H)4^H$ reaction data. The obtained results confirm those reported in Ref. [7] and provide more evidence for the suggested structure and decay mechanism of both 6H and 7H systems.

The analysis of the possible background channels confirms the nature of the low-energy 4H MM spectrum presented in Ref. [7]. For the first time the spectrum of 5H produced in the 4H decay was reconstructed. The obtained strong correlation between the low-energy spectra of 6H and 5H makes the first experimental evidence that the notion about the two-step $^6H\rightarrow^5H(\text{g.s.})+n\rightarrow^3H+3n$ decay is correct. Although, the obtained 5H MM energy resolution did not allow us to resolve it into the known 5H structure with the ground state at 1.8 MeV [11–13]. The presented strong correlation of the 5H and 6H spectra reproduces the conclusion of the absence of the 4H resonances for $ET < 3.5$ MeV. The latter, in conjunction with the observation of the 7H g.s. at 2.2(5) MeV, increases the reliability of the level data presented in work [7] for the heavy hydrogen isotopes, see Fig. 4.

The reliable determination of the decay schemes for the superheavy 6H and 7H isotopes is a long-standing experimental challenge, and this work represents an important step towards the resolution of this problem.

6 Acknowledgement

We acknowledge the principal support of this work by the Russian Science Foundation grant No. 22-12-00054. The authors are grateful to Profs. Yu.Ts. Oganessian and S.N. Dmitriev for the long-term support and development of this activity. We acknowledge important contribution of Prof. M.S. Golovkov to the development of the experimental methods and useful discussions. Also, authors express their gratitude to the acceleration team for the stable work of U-400M cyclotron during all runs.

References