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Abstract. We derive an effective Reich-Moore approximation (RMA) of the
Wigner-Eisenbud R-matrix formalism parameterized by complex-valued reso-
nance energies and widths; this RMA exactly reproduces the total eliminated
cross section. We show that resonance parameters evaluated for a conventional
boundary conditions (BCs), Bc = S c(E),∗∗∗ are approximately equal to the R-
matrix parameters in Park’s formalism by employing a linear approximation
of the shift function therein [T.-S. Park, Phys. Rev. C 106 (2021) 064612].
We outline a method for converting Park’s observed reduced width amplitudes
(RWAs) and their covariance matrix into Brune’s alternative R-matrix RWAs
and their covariance matrix [C. Brune, Phys. Rev. C 66 (2002) 044611]. We
extend the Park’s R-matrix formalism into the complex plane by introducing
a complex-valued basis set of eigenfunctions of a complex-symmetric (non-
Hermitian) Hamiltonian in the R-matrix interior. We observe that its R-matrix
resonance energies and widths are directly related to the poles and residues,
respectively, of Hwang’s sum-over-poles representation of cross sections [R.N.
Hwang, Nucl. Sci. Eng. 96 (1987) 192].

1 Introduction

Statistical assumptions or approximations used in resolved resonance data evaluations based
on the R-matrix are being reviewed in the context of evaluations performed under the auspices
of the International Nuclear Data Evaluation Network Light Elements (INDEN-LE) [4]. To
contribute to these efforts, we show analytically how the conventional Reich-Moore approx-
imation (RMA), in which resonance energies alone are complex-valued, can be improved
by introducing complex-valued widths. We also show that it yields the total cross section of
eliminated capture channels exactly as it would if computed from the exact R-matrix. We also
consider applications of the effective RMA toward elimination of other kinds of channels.

Additionally, the INDEN-LE collaboration has scrutinized a conventional choice for BCs,
specifically Bc = S c(E), which is commonly used for resolved resonance cross section data
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evaluations performed by the SAMMY code [2] and was adopted by the US Evaluated Nu-
clear Data File (ENDF) [5]. These BCs have been used extensively by Lane and Thomas
in their review article [1] to simplify some analytical derivations. We will use the R-matrix
formalism recently derived by Tae-Sun Park [6] to clarify the implications of this choice of
BC and to describe why this choice has been useful despite its deviation from the R-matrix
formalism, however slight. In particular, we show that the Park’s R-matrix parameters coin-
cide with those of the Bc=S c(E) BC when adopting a linear approximation for slowly varying
shift functions that appear in the R-matrix of Park.1

To transform the latter parameter set to that of the Wigner-Eisenbud’s, all that remains
is to transform Park’s resonance parameters to those of Brune’s alternative R-matrix because
the transformation between the Brune’s and the Wigner-Eisenbud’s parameters has already
been derived [7]. The transformation of Park’s observed reduced width amplitudes (RWAs)
to Brune’s alternative RWAs is described in Section 2.3, whereas the observed resonance
energies of Park and Brune are known to be equal [6]. The R-matrix formalisms, parameter-
izations, and transformations just mentioned are represented by boxes and arrows in a more
general schema in Figure 1.

One practical advantage of the R-matrix formalism parameterized by the observed reso-
nance energies (corresponding to locations of the observed peaks in a given cross section) is
that it simplifies refining of the energy-mesh around the peaks on which the cross section is
computed during an evaluation. This is in contrast to the formal R-matrix resonance ener-
gies which are shifted relative to the peaks for orbital angular momentum quantum number,
l, greater than zero. There is a similar advantage to having a formalism parameterized by
the observed RWAs because they are directly related to the widths of the observed resonance
peaks.

Bc = Sc(E) 

Park
(complex param’s.)

Park Brune  Wigner-Eisenbud

Hwang

Reich-Moore
(complex param’s.)

Bc = Lc(E) 
(complex param’s.)

Reich-Moore
(real widths)

Brune  
(complex param’s.)

Figure 1. Phenomenological R-matrix formalisms considered in this work are represented by their
respective boxes, and some transformations among their parameter sets are represented by arrows. Red
lines or text indicates a formalism or transformation introduced in this work. Black lines or text indicates
an extant formalism or parameter transformations.

2 Formal derivations

In Section 2.1, we start from a general expression for the reduced R-matrix derived by Lane
and Thomas (LT) [1] to derive an effective RMA with complex-valued resonance energies
and widths and to show that it exactly reproduces the total eliminated cross section. In Sec-
tion 2.2, we use the perspective provided by the Park’s R-matrix formalism [6] to improve

1Assuming sufficient accuracy of the linear approximation, we treat the Park’s resonance parameters as approxi-
mately equal to those evaluated using the Bc=S c(E) BC.
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our understanding of the conventional Bc = S c(E) BC [2]. In Section 2.3, we describe an al-
gorithm for converting the observed RWA R-matrix parameters of Park to Brune’s alternative
R-matrix RWAs. In Section 2.4, we extend Park’s formalism into the complex plane, in which
(complex-valued) resonance energies conveniently correspond to the poles of the scattering
matrix in the complex plane.

2.1 Transforming the reduced R-matrix of LT to an effective RMA

To improve the RMA, we start with a general analytical expression for the reduced R-matrix
found in Eqs. (X.1.7-9a) of LT [1], where a reduced R-matrix is given as

R = γᵀr A−1γr (1)
= γᵀr [e − ξ − E1]−1γr, (2)

where2 e is a diagonal matrix of Wigner-Eisenbud’s formal resonance energy parameters,

ξ ≡ γeL′eγ
ᵀ
e , (3)

is a symmetric matrix, and where, by using the notation of LT [1], we have set L′e = L0
e ≡

Le − Be and R0
ee = 0.3 Being analytically exact, these expressions reproduce the total and

the total eliminated cross section4 that would be computed from the exact prior R-matrix.
Consequently, preservation of analytical equivalence with the expression above ensures that
the total and the total eliminated cross section are preserved exactly.

To show how an effective set of reduced R-matrix parameters may become complex-
valued, an eigenvalue decomposition (EVD) of a symmetric5 matrix e−ξ is assumed to exist:

e − ξ = uεuᵀ, (4)

where uuᵀ = 1 and ε is diagonal. Using this EVD in Eq. (2) yields an equivalent expression
for the reduced R-matrix of LT:

R = γᵀr [uεuᵀ − E1]−1γr, (5)
= γᵀr [u(ε − E1)uᵀ]−1γr, (6)
= γᵀr (uᵀ)−1[ε − E1]−1u−1γr, (7)
= (γᵀr u)[ε − E1]−1(uᵀγr), and (8)
= gᵀr [ε − E1]−1gr, (9)

where gr ≡ u
ᵀγr and (ε, gr) may be viewed as an effective reduced R-matrix parameter set

that could be optimized independently of the formal parameter set (e,γr,γe).
For Le independent of energy, E, as is assumed for capture channels for which Lγe =

iPγe = i, matrix ξ is symmetric6 and complex-valued, the effective reduced R-matrix pa-
rameters are complex-valued and independent of energy, thus maintaining the advantage of
energy-independent R-matrix parameters. A conventional RMA implemented in SAMMY is
recovered for a (real-valued) diagonal e and a pure imaginary-valued diagonal ξ, for which
u = 1, ε = e − ξ, and gr = γr.

2Labels r and e refer to retained and eliminated subsets of channels, respectively.
3The prime symbol in L′e is copied verbatim from LT [1] and does not represent a derivative in this instance.
4The total eliminated cross section is a measure of deviation of the scattering matrix from unitarity caused by the

imaginary components of (ε, gr).
5The same form of EVD holds for complex-valued symmetric matrix, for which u and ε may be complex-valued.
6Its dominant elements lie along its diagonal, where they are the sum of squares of RWAs of eliminated channels

for each resonance; off-diagonal elements are expected to be much smaller due to expected random distribution of
(complex) phases among the RWAs of eliminated capture channels for distinct resonances.
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On the other hand, for Le energy-dependent (whether real- or complex-valued), the eigen-
vector matrix u, and hence the matrix of effective RWAs (gr), is also energy dependent,
thereby shedding the advantage of having energy-independent R-matrix parameters.7

2.2 A Perspective on the Bc = S c(E) BC from Park’s R-matrix formalism

Park’s R-matrix formalism and its energy dependence in terms of observed resonance ener-
gies and RWAs in particular, provide a useful vantage point to interpret the Bc = S c(E) ap-
proximation employed by the SAMMY code [2]. For completeness, we render the R-matrix
derived by Park as

R(Park)
S = γᵀ(e − S(E) − E1)−1γ. (10)

The subscript S is introduced to distinguish it from the complex-valued matrix, R(Park)
L , in-

troduced in Eq. (22). Here, e = diag({Eλ}) is a diagonal matrix of observed (real-valued)
resonance energies, where

[S(E)]λλ′ =


∑

c γ
2
λc

[
S c(E) − S λc + (Eλ − E)S ′λc

]
, for λ′ = λ,∑

c γλcγλ′c
[
S c(E) +

(Eλ′−E)S λc−(Eλ−E)S λ′c)
Eλ−Eλ′

]
, for λ′ , λ,

(11)

with S λc ≡ S c(Eλ) and S ′λc ≡
dS c(E)

dE

∣∣∣
E=Eλ

(see Eq. (29) of [6]). Inserting a linear approxima-
tion8 for the shift function around a level, Eλ, specifically,

S c(E) = S λc − (Eλ − E)S ′λc (12)

into a corresponding diagonal element of S(E) in Eq. (11) makes it equal to 0. Analogously,
a linear approximation for the shift function that appears in the off-diagonal elements of
[S(E)]λλ′ (i.e., a linear interpolation between points (Eλ, S λc) and (Eλ′ , S λ′c)) makes each of
the off-diagonal elements vanish. Because the entire matrix S(E) is made to vanish for this
linear approximation, the R-matrix parameterization in Eq. (10) attains a form identical to that
for the Bc = S c(E) BC. Consequently, the resonance parameters evaluated for the Bc = S c(E)
BC can be thought of as the observed resonance parameters in Park’s formalism (when using
the linear approximation just described) and have been interpreted as such in the SAMMY
code [2].

2.3 Transforming observed RWAs into Brune’s alternative RWAs

Because of its relatively recent introduction to the nuclear data evaluation community [4],
there is some interest in transforming the observed R-matrix parameter sets of the Park’s
R-matrix formalism [6] to their equivalent sets in the Wigner-Eisenbud’s R-matrix formal-
ism [1] or its alternative parameterization derived by Brune [7]. Because the transformation
between the Wigner-Eisenbud’s and Brune’s alternative R-matrix parameterization has been
published, it will suffice to describe the conversion between the parameterizations of Park

7One may choose to neglect such energy dependence when its effect is not appreciable.
8According to the plot of S l(E) in Fig. 3.a of [3], where an analytical continuation was used for E < 0, a linear

approximation is expected to be accurate for all even orbital angular momenta, “l”, and for all odd values of l (with
a possible exception for l = 1, which would need to be scrutinized) in the energy range covered in evaluations
based on R-matrix formalism; whether this approximation is sufficiently accurate could be ascertained by comparing
evaluations that use the exact formalism of Park.
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and Brune. As explained by Park [6], the observed resonance energies coincide with the al-
ternative resonance energies of Brune, and the observed RWAs relate to the alternative RWAs
of Brune via Eq. (34) of [6], as restated here for completeness:9

γobs
λc = γ̃λc[1 +

∑
c′
γ̃2
λc′S

′
λc′ ]
−1/2, (13)

where γ̃λc are the alternative RWAs defined by Brune [7]. Transforming from Brune’s al-
ternative RWAs to Park’s observed RWAs amounts to evaluating the right hand side of this
expression, whereas the inverse transform can be achieved by applying the Newton-Raphson
method. For the sake of inverting this expression by the Newton-Raphson method, we convert
it to linear algebra form10,

f (x) = x(1 + xᵀS′x)−
1
2 , (14)

where x is a channel vector of formal RWAs, γ̃λc, for a fixed resonance, λ, where S′ is a
diagonal channel matrix of shift function derivatives evaluated at the observed resonance
energy, and where, for convenience, we define

χ2(x) ≡ (〈y〉 − f (x))ᵀY−1(〈y〉 − f (x)) (15)

Here, 〈y〉 represents a channel vector of (the expectation values11 of) observed RWAs, γobs
λc , of

the same level, λ, so that χ2(x) can be minimized independently for each level by a Newton-
Raphson method, and where

Y ≡ 〈(y − 〈y〉)(y − 〈y〉)ᵀ) (16)

is a covariance matrix of Brune’s alternative RWAs. This covariance matrix would be needed
to obtain its posterior covariance matrix, X′, which is a Hessian of χ2(x) evaluated at 〈x〉′.
From a Bayesian perspective, the expression for the χ2(x) in Eq. (15) assumes that the data,
represented by 〈y〉 and Y, and the model, given by Eq. (14), are perfect. It also assumes that
all probability distribution functions are normal (i.e., Gaussian) and that the model is linear or
that it can be approximated linearly. These assumptions, although imposing strong constraints
on the solution, are not expected to introduce a significant aberration from a true solution,
〈x〉′; however, imposition of these assumptions may yield a covariance matrix, X′, which
underestimates the true uncertainties of 〈x〉′. Minimization of χ2(x) by an iterative Newton-
Raphson method yields a solution when χ2(x) = 0 is reached; converting the solution and its
covariance (〈x〉′ and X′, respectively) back to the observed RWAs of Park via Eq. (13), and
comparing to the original (i.e. prior) observed RWAs of Park and its covariance (〈y〉 and Y,
respectively), could quantify any error that may have been incurred by the transformation.12

2.4 Extension of Park’s R-matrix formalism into complex plane

Inspired by Park’s derivation [6], we adapt it to complex-symmetric,13 non-Hermitian Hamil-
tonian operators,H , whose bi-orthogonal basis set of eigenfunctions of decaying compound

9Squaring this expression is equivalent to Eq. (16) of Brune [7].
10The existence of an analytical solution to the inverse transform, x = f (x)(1− f (x)ᵀS′ f (x))−

1
2 , appearing in Eq.

(42) of [8] has been kindly brought to our attention by Ian J. Thompson after the submission of this manuscript.
11Expectation values are implied by the angled brackets, 〈·〉.
12This transformation method could be generalized further by utilizing the concept of generalized data, ζ ≡ (x, y),

and of generalized parameters, z(x) ≡ (x, f (x)), with which the cost function becomes χ2(x) = (〈ζ〉−z(x))ᵀC−1(〈ζ〉−
z(x)), where C is a covariance matrix of z, which could be minimized [9, 10].

13For a complex-symmetric matrix acting to its left, as in Eq. 18, Hermitian conjugation is not needed.
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nuclear resonant states within the R-matrix channel radius can be defined as

H|Xλ〉 = Eλ|Xλ〉 and (17)
〈Xλ|H = 〈Xλ|Eλ, (18)

where |Xλ〉 and 〈Xλ| are (complex-valued) vector-transposes of each other (with complex-
valued discrete eigenvalue spectrum {Eλ}), thereby satisfying the following orthonormality14

relation:

〈Xλ|Xλ′〉 =

∫
XλXλ′dτ = δλλ′ . (19)

Here, the integration is over the volume of the interior region but without the complex con-
jugation of Xλ appearing in Eq. (7) from Park [6] for Hermitian Hamiltonians [11, 12]. The
orthonormality relation in Eq. (19) can be stated in terms of complex-valued radial functions,∑

c

∫ ac

0
drcUλc(rc)Uλ′c(rc) = δλλ′ , (20)

without the complex conjugation ofUλc(rc).
With the distinctions introduced above, the formal steps of Park’s derivation in Eqs. (8–

29) [6] can be retraced step-by-step for a corresponding overlap matrix:

Jλλ′ ≡

∫
XλXλ′dτ. (21)

All the steps in the original derivation of the of the R-matrix by Park [6] can be retraced for the
complex basis introduced above to yield a corresponding form in which resonance parameters
are replaced by their complex-valued counterparts, {Eλ, γλc}, and any appearance of the shift
function, S c(·), is analogously replaced by a complex-valued logarithmic derivative,15 Lc(·),
to yield16

R(Park)
L = γᵀ(ε − L(E) − E1)−1γ, where E, [γ]λc ∈ C, (22)

and ε = diag({Eλ}) is a diagonal matrix of observed complex-valued resonance energies, Eλ,
where

[L(E)]λλ′ =


∑

c γ
2
λc

[
Lc(E) − Lλc + (Eλ − E)L′λc

]
, for λ′ = λ,∑

c γλcγλ′c
[
Lc(E) +

(Eλ′−E)Lλc−(Eλ−E)Lλ′c)
Eλ−Eλ′

]
, for λ′ , λ.

(23)

Here, Lλc ≡ Lc(Eλ), and the observed designations of complex-valued resonance energies
and RWAs refer to poles and residues of the cross section in the complex plane. Following
the logic outlined in Section 2.2, a linear approximation17 of Lλc(E) around Eλ makes each
element of the L(E) matrix vanish to yield a sum-over-poles representation of the scattering
matrix, where pole positions are defined by {Eλ}, and the residues are defined via the matrix
of RWAs, γ. Notably, the poles and the residues of the scattering matrix can be found from
various R-matrix parameterizations (Wigner-Eisenbud RMA, Brune, or Park) by numerically
finding the poles and residues of the corresponding scattering matrix [13–15].

14This orthonormality is analogous to that between the left and right eigenvector matrices, uuᵀ = 1, of a complex-
symmetric matrix ξ considered in Section 2.1.

15For example, Bλc = S c(Eλ) is replaced by Bλc = Lc(Eλ).
16The quantity in parenthesis corresponds to the complex-valued A-matrix of Park [6].
17Plots of the shift, S c(E), and the penetrability function, Pc(E), in Figure 3 of [3] show that a linear approximation

of Lc(E) ≡ S c(E) + iPc(E) is likely accurate; a possible exception for the c = l = 1 case ought to be scrutinized.
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3 Concluding remarks

We presented several lesser-known connections among various R-matrix formalisms and pa-
rameterizations, described methods for transforming among their respective parameter sets,
and outlined a method for corresponding transformations of covariance matrices. Park’s
R-matrix formalism was used to link the Bc = S c(E) BC parameters to Brune’s alterna-
tive R-matrix parameters and from those to the Wigner-Eisenbud parameters. Properties of
complex-symmetric Hamiltonian matrices and their eigenvalues and eigenvectors were used
to derive (1) an effective RMA parameterized by complex-valued energies and widths to re-
produce the total cross section of the eliminated channels and (2) a complex-plane analogue
of Park’s R-matrix formalism to provide a direct connection from the complex-valued res-
onance energies and RWAs to the poles and residues, respectively, of the scattering matrix
[13, 15]. We hope that some of the effective R-matrix parameterizations introduced here, and
the transformations among them, may lead to improvements in R-matrix evaluation codes
[2, 16], the quality of evaluated nuclear data libraries [5], and the fidelity of neutron transport
simulations for the Nuclear Criticality Safety Program and nuclear engineering.

4 Acknowledgments

Useful discussions with Helmut Leeb, Ian J. Thompson, Mark W. Paris, Gerald M. Hale,
Zhenpeng Chen, and other INDEN-LE Meeting participants are gratefully acknowledged.

This work was supported by the Nuclear Criticality Safety Program, funded and managed
by the National Nuclear Security Administration for the US Department of Energy.

References

[1] A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958)
[2] N. Larson, Tech. Rep. ORNL/TM-9179/R8, ORNL, Oak Ridge, TN, USA (2008)
[3] P. Ducru, B. Forget, V. Sobes, G. Hale, M. Paris, Phys. Rev. C 103, 064608 (2021)
[4] P. Dimitriou, Z. Chen, R.J. deBoer, G.M. Hale, S. Kunieda, H. Leeb, M. Paris, M.T.

Pigni, T. Srdinko, P. Tamagno et al., EPJ Web of Conf. 284, 03002 (2023)
[5] D. Brown, M. Chadwick, R. Capote, A. Kahler, A. Trkov, M. Herman, A. Sonzogni,

Y. Danon, A. Carlson, M. Dunn et al., Nuclear Data Sheets 148, 1 (2018)
[6] T.S. Park, Phys. Rev. C 104, 064612 (2021)
[7] C.R. Brune, Phys. Rev. C 66, 044611 (2002)
[8] R.E. Azuma, E. Uberseder, E.C. Simpson, C.R. Brune, H. Costantini, R.J. de Boer,

J. Görres, M. Heil, P.J. LeBlanc, C. Ugalde et al., Phys. Rev. C 81, 045805 (2010)
[9] F.H. Froehner, Tech. Rep. JEFF Report 18, NEA, OECD Publishing (2000)

[10] J.M. Brown, G. Arbanas, D. Wiarda, A. Holcomb, Tech. Rep. ORNL/TM-2022/2428,
ORNL, Oak Ridge, TN, USA (2022), https://www.osti.gov/biblio/1874643

[11] H. Feshbach, Theoretical Nuclear Physics: Nuclear Reactions (J. W. & Sons Ltd, 1993)
[12] G. Arbanas, C. Bertulani, D.J. Dean, A.K. Kerman, AIP Conf. Proc. 1005, 160 (2008)
[13] R.N. Hwang, Nuclear Science and Engineering 96, 192 (1987)
[14] G.M. Hale, R.E. Brown, N. Jarmie, Phys. Rev. Lett. 59, 763 (1987)
[15] P. Ducru, A. Alhajri, I. Meyer, B. Forget et al., Phys. Rev. C 103, 064610 (2021)
[16] I.J. Thompson, R.J. deBoer, P. Dimitriou, S. Kunieda, M.T. Pigni, G. Arbanas, H. Leeb,

T. Srdinko, G. Hale, P. Tamagno et al., The European Physical Journal A 55, 92 (2019)

  
 

 

, 04007 (2024)EPJ Web of Conferences https://doi.org/10.1051/epjconf/202429404007 294
WONDER-2023

7


