Far-off-equilibrium early-stage dynamics in high-energy nuclear collisions

Chandrodoy Chattopadhyay1,∗, Ulrich Heinz2,∗∗, and Thomas Schäfer3,∗∗∗

1Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
2Department of Physics, The Ohio State University, Columbus, OH 43210, USA
3Department of Physics, North Carolina State University, Raleigh, NC 27695, USA

Abstract. We explore the far-off-equilibrium aspects of the (1+1)-dimensional early-stage evolution of a weakly-coupled quark-gluon plasma using kinetic theory and hydrodynamics. For a large set of far-off-equilibrium initial conditions the system exhibits a peculiar phenomenon where its total equilibrium entropy decreases with time. Using a non-equilibrium definition of entropy based on Boltzmann’s H-function, we demonstrate how this apparently anomalous behavior is consistent with the second law of thermodynamics. We also use the H-function to formulate ‘maximum-entropy’ hydrodynamics, a far-off-equilibrium macroscopic theory that can describe both free-streaming and near-equilibrium regimes of quark-gluon plasma in a single framework.

1 Introduction

Precise determination of transport coefficients like the specific shear and bulk viscosities, \(\eta / s \) and \(\zeta / s \), of the quark-gluon plasma formed in high-energy nucleus-nucleus collisions hinges upon accurately modeling the stress tensor (\(T^{\mu \nu} \)) evolution during the system’s early stage. This stage is characterised by far-off-equilibrium dynamics which may be modeled by weakly coupled kinetic theory until \(O(1) \) fm/c [1, 2]. This approach is, however, numerically daunting as solving kinetic theory amounts to tackling a 7-dimensional problem in phase-space. Moreover, if one is only interested in the evolution of macroscopic quantities like \(T^{\mu \nu} \), solving for the full kinetic distribution is likely unnecessary. It is thus desirable to have a macroscopic framework which can model the far-off-equilibrium evolution of \(T^{\mu \nu} \) both physically accurately and numerically efficiently. In this work, we first explore the sensitivity of the \(T^{\mu \nu} \) evolution in kinetic theory to initial state momentum anisotropies of the plasma. By considering extreme off-equilibrium initial conditions for a quark-gluon gas undergoing Bjorken expansion [3], we point out non-intuitive out-of-equilibrium effects arising in kinetic theory. In the second part we formulate a new macroscopic theory (ME-hydrodynamics) which can be used to describe in a single framework both the far-off-equilibrium pre-hydrodynamic and the near-equilibrium dissipative hydrodynamic regimes of the plasma.

2 Kinetic theory of a massive quark-gluon gas

For a weakly interacting gas of quarks, anti-quarks, and gluons undergoing boost-invariant Bjorken expansion along the beam axis, we solve the Boltzmann equation in a relaxation-time
approximation,

$$\frac{\partial f^i}{\partial \tau} = -\frac{1}{\tau_R(T)} \left(f^i - f^i_{\text{eq}} \right).$$ \hspace{1cm} (1)

Here \(\tau \) is Milne time, \(\tau_R \) is the microscopic relaxation time, and the superscript \(i \in \{ q, \bar{q}, g \} \) on the kinetic distributions distinguishes between particle species. \(f^i_{\text{eq}} \) are given by Fermi-Dirac (for quarks and anti-quarks) or Bose-Einstein (for gluons) distributions which involve the Landau matched effective temperature and quark chemical potential \((T, \mu)\). Symmetries of Bjorken flow imply vanishing net-quark diffusion, i.e. \(n(\tau) \propto 1/\tau \) and \(T_{\mu\nu} = \sum_i p^i_\mu p^i_\nu f^i = \text{diag}(e, P_T, P_T, P_L) \), where \(e \) is energy density and \(P_T \) and \(P_L \) are effective transverse and longitudinal pressures. An important physical quantity is the non-equilibrium entropy density (in the rest frame of a fluid having velocity \(u^\mu \)), obtained from Boltzmann’s H-function:

$$s = -\sum_i \int_{p_i} \left(u^i \cdot p_i \right) \left(f^i \ln f^i - \frac{1 + a_i f^i}{a_i} \ln \left(1 + a_i f^i \right) \right),$$ \hspace{1cm} (2)

where \(a_{q, \bar{q}} = -1 \) and \(a_g = 1 \). In equilibrium \(s \rightarrow s_{\text{eq}} = (e + P - \mu n)/T \). In Fig. 1 we show solutions of kinetic theory for two sets of extreme far-off-equilibrium initial conditions (see figure caption) which were set up using a Romatschke-Strickland (RS) distribution [5, 6]. Although all curves start with the same effective \((T, \mu_B)\), the phase trajectories are quite sensitive to the choice of initial momentum space anisotropy. In Bjorken flow, Navier-Stokes hydrodynamics predicts that the ratio \(s_{\text{eq}}/n \) must increase over time due to viscous heating. While this is indeed the case for panel (a) (see dotted lines for \(s_{\text{eq}}/n \) evolution in (b)), this expectation is not borne out for the trajectories in panel (c). Here, \(s_{\text{eq}}/n \) decreases for a certain duration of time. However, this does not imply a violation of the second-law of thermodynamics as the total entropy per baryon which includes non-equilibrium effects never decreases. The feature of decreasing equilibrium entropy per baryon density results in a peculiar phenomena which we call ‘non-equilibrium cooling’ (see Fig. 2). Here, the effective temperature falls even faster than what is expected for an ideal (inviscid) fluid.

3 Maximum-entropy truncation of the Boltzmann equation

The Boltzmann equation can be expressed as an infinite hierarchy of equations for momentum moments of \(f(x, p) \) [7] where low-order moments corresponding to components of \(T^{\mu\nu} \)
are coupled to higher-order ‘non-hydrodynamic’ moments. To obtain a macroscopic
description solely in terms of \(T^{\mu \nu} \), the infinite hierarchy has to be truncated by expressing the
non-hydrodynamic moments in terms of an approximate kinetic distribution using only inform-
ation contained in \(T^{\mu \nu} \). Based on Jaynes’s insights on the connections between statistical
mechanics and information theory [8], Everett et al. [9] recently proposed a novel way of
reconstructing a kinetic distribution from the energy-momentum tensor using the maximum
entropy principle. The idea is to find an \(f(x, p) \) that maximizes the non-equilibrium entropy
density (2), subject to the information (constraint) that it reproduces the given 10 components
of \(T^{\mu \nu} \). For a single component gas the maximum entropy distribution is [9]

\[
f_{\text{ME}}(x, p) = \left[\exp \left(\frac{\Lambda_{\mu \nu} p^\mu p^\nu}{u \cdot p} \right) - a \right]^{-1},
\]

where \(\Lambda_{\mu \nu} \) are Lagrange multipliers corresponding to \(T^{\mu \nu} \). Landau matching conditions fur-
ther simplify the argument of the exponential [10]. Unlike the commonly used distributions
for Grad or Chapman-Enskog (CE) truncation, \(f_{\text{ME}} \) is positive definite for all momenta and al-
low for non-equilibrium matching to conserved currents for a wide range of non-equilibrium
stresses. It also ensures that the resulting macroscopic framework, which we call ME-hydro,
has a non-negative entropy production rate [11] and that in the limit of small viscous stresses
ME-hydro reduces to second-order Chapman-Enskog fluid dynamics [9].

4 ME-hydro vs. RTA kinetic theory in Bjorken and Gubser flows
The exact evolution equations for the 3 independent components of \(T^{\mu \nu} = \text{diag}(e, P_T, P_L) \)
in Bjorken flow are given by

\[
\begin{align*}
\frac{d e}{d \tau} &= -\frac{e + P_L}{\tau}, \\
\frac{d P_T}{d \tau} &= -\frac{P_T - P}{\tau_R} - \frac{P_T}{\tau} + \frac{\zeta_T}{\tau}, \\
\frac{d P_L}{d \tau} &= -\frac{P_L - P}{\tau_R} - \frac{3P_L}{\tau} + \frac{\zeta_L}{\tau}.
\end{align*}
\]

The terms \(\zeta_T, \zeta_L \) introduce couplings to ‘non-hydrodynamic’ moments of \(f(\tau, p_T, p_z) \); for
example, \(\zeta_L = \int_p E^2 p^4 f \). To truncate we replace \(f \mapsto f_{\text{ME}} \) where \(f_{\text{ME}} \) is constructed using
evolution equations

for the two independent (dimensionless) variables \((\hat{e}, \hat{P}_T) \) as functions of de-Sitter ‘time’ \(\rho \) are
equilibrium. Figure 4a shows that Chapman-Enskog hydrodynamics [14] fail to capture the late-time transverse free-streaming regime of Gubser flow. The only framework that performs slightly better than ME-hydro is anisotropic hydrodynamics [15, 16] (shown in panel (b)) which uses the RS ansatz as a truncation distribution.

4.1 Summary
Non-equilibrium effects during the early stages of QGP evolution can substantially alter its phase trajectories as compared to near-equilibrium predictions. ME-hydrodynamics, a macroscopic theory based on a simple physical principle, holds promise in describing such far-off-equilibrium effects. Further numerical analysis is required to test this expectation.

Acknowledgements. This work was supported by the US Department of Energy, Office of Nuclear Physics under contracts DE-FG02-03ER41260 (CC, TS) and DE-SC0004286 (UH), as well as by the Ohio State University Emeritus Academy (UH).

References