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Abstract. The Pierre Auger Observatory has conducted measurements of the
energy spectrum and mass composition of cosmic rays using different methods.
Utilizing both surface and fluorescence detectors (SD and FD), the Observa-
tory provides unprecedented precision in understanding these particles. While
primarily designed to measure ultra-high energy cosmic rays, the FD’s high-
elevation telescopes and the dense arrays of SD stations enable observations
down to 6 PeV and 60 PeV, respectively. To determine the depth of shower
maximum, a critical parameter for identifying primary particle types, both di-
rect longitudinal profile measurements from the FD and indirect signal analyses
from the SD are employed. An energy evolution of the mass of primary par-
ticles, as well as of the spectral index of the flux intensity, are observed and
characterized by features described in the presented work. The measurements
benefit from the joint operation of the FD and SD, delivering a systematic uncer-
tainty of 14% in energy determination and an accumulated exposure reaching
80 000 km2 sr yr at the highest energies.

1 Introduction

The Pierre Auger Observatory [1] is the largest cosmic-ray observatory built to date, covering
an area of ∼3000 km2. Using its fluorescence and surface detectors (FD and SD), it measures
the intensity of incoming cosmic rays and their mass composition through the induced ex-
tensive air showers (EAS), as described in Sections 2 and 3, respectively. The SD comprises
arrays of water-Cherenkov stations, one with the spacing of 1500 m, dedicated to ultra-high
energies above 2 EeV, the 750 m array sensitive to showers above 100 PeV, and the 433 m
array with full trigger efficiency above 60 PeV. The FD consists of 24 telescopes overlooking
the 1500 m array of the SD, and 3 high-elevation telescopes that investigate lower energies
down to 6 PeV.

2 Energy spectrum

The intensity of cosmic rays is measured separately using each of the SD arrays [2–4], with
the use of the hybrid method, and solely by the FD in Cherenkov regime [5]. As described in
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Refs. [2, 5], the SD measurements are calibrated with FD-determined energies on a common
subset of events. This method keeps the huge statistics collected by the SD which oper-
ates constantly, while the more precise FD data, limited to clear moonless nights, deliver an
energy-scale uncertainty of 14 % [6].

Individual estimates of cosmic-ray intensity are shown in Fig. 1, together with the com-
bined spectrum where the intensity is modeled as a sequence of power laws with parameters
listed in Ref. [5].
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Figure 1. The energy spectrum of cosmic rays derived from six data sets of the Pierre Auger Observa-
tory (left) and the combined spectrum (right). Data come from Refs. [4, 5].

3 Mass composition

At the Pierre Auger Observatory, the mass composition of cosmic rays is determined from
the depth of the EAS maximum, Xmax. This characteristic is accessible either directly or
indirectly. In the direct method, the longitudinal profile of the EAS is measured using the FD
[7] or a radio array [8]. One indirect method uses signal traces in water-Cherenkov stations
of the SD processed by deep-learning algorithms [9]. The average and standard deviation of
Xmax distribution obtained from both types of methods are shown in Fig. 2 as functions of
energy. The Xmax scale reported by the SD measurement is calibrated with the FD data on a
common subset, thus these are by construction consistent within systematic uncertainties.

Moments as well as full Xmax distributions can be interpreted in terms of logarithm of the
mass number, ln A. Particular models of hadronic interactions must be used for this purpose,
such a study is performed in Ref. [11]. However, recent results show that contemporary
interaction models are unable to consistently describe both SD and FD data of the Pierre
Auger Observatory together [12], which leads to modified predictions of Xmax, shown in
Fig. 3, and thus a changed ln A interpretation.

4 Conclusions

After 17 years of operation, the Pierre Auger Observatory has measured the energy spectrum
of ultra-high energy cosmic rays as well as their mass composition. Both observables evolve
with energy, suggesting complex characteristics of the sources of primary cosmic rays. The
interactions of primaries with electromagnetic radiation during propagation also affect the
spectrum and composition seen at Earth [13].

The features in the energy spectrum are named the low-energy ankle, the 2nd knee, the
ankle, the instep and a steep suppression above 47 EeV. The Peters’ cycle [14] seems to be a
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Figure 2. Energy evolution of the average (left) and standard deviation (right) of Xmax distribu-
tion. Data from horizontally-looking telescopes are marked as FD [7] while high-elevation data as
HEAT 2017 [10]. The estimate from deep learning is given as SD [9], and AERA shows the radio
dataset [8]. Reproduced from Ref. [11].

Figure 3. Average Xmax measured at the Pierre Auger Observatory accompanied by predictions of
unmodified (without bands) and modified (with bands) models of hadronic interactions. The Xmax

modifications are needed to describe the FD and SD data together. Bands correspond to systematic
uncertainties. Taken from Ref. [12].

good framework to describe the mass composition which is dominated by protons around 1
EeV, by helium nuclei at about 10 EeV, and by the CNO group around 50 EeV and above [7].
However, this interpretation of Xmax data is valid only in the context of contemporary models
of hadronic interactions. Because these models are unable to describe all available Auger
data together, an even heavier composition could be expected when parameters of interaction
models are adjusted.
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Figure 1. The energy spectrum of cosmic rays derived from six data sets of the Pierre Auger Observa-
tory (left) and the combined spectrum (right). Data come from Refs. [4, 5].
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Auger Observatory together [12], which leads to modified predictions of Xmax, shown in
Fig. 3, and thus a changed ln A interpretation.
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good framework to describe the mass composition which is dominated by protons around 1
EeV, by helium nuclei at about 10 EeV, and by the CNO group around 50 EeV and above [7].
However, this interpretation of Xmax data is valid only in the context of contemporary models
of hadronic interactions. Because these models are unable to describe all available Auger
data together, an even heavier composition could be expected when parameters of interaction
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