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Abstract. The paper presents a relatively easy approach for analytical 
calculation of the self-inductance for wires of a triangular cross-section. The 
Kalantarov-Zeitlin approach was applied to develop a new set of formulae. 
The low-frequency and direct current case is studied. The final expressions 
provide simple and accurate approximation of the self-inductance of the 
triangular wire and might serve as a basis for further calculation of nontrivial 
geometries.  

1 Introduction 
For simplifying inductance calculations the approximation of Geometric Mean Distance 
(GMD), originated from Maxwell [1], is usually used. The method is usually divided on 
mutual-GMD for mutual and self-GMD for self-inductance calculations. Self-GMD method 
is correct for calculating the self-inductance of long straight wires; for curved conductors it 
only approximates the exact result [2, 3]. The lesser is ratio g/R, where g is self-GMD and R 
is winding radius, the more exact is the result. It is also known a more exact formula, 
proposed by Kalantarov and Zeitlin [4], which gives a precision of (g/R)2 order. 

Practical formulae cover the most common geometries, i.e. circular or rectangular 
conductors. More complicated shapes, particularly, a triangular cross section are calculated 
by numerical methods that imply massive computations. 

This paper describes a possibility to calculate the self-inductance of a triangular conductor 
using relatively simple analytical expressions. The new formulae have been derived using 
the Kalantarov-Zeitlin approaches [4]. 

The original formula expresses the self-inductance L of a wire with an arbitrary cross 
section S as a sum of components related to the wire geometry and current distribution. 

L = N – G + A – Q,                                                  (1) 
where N depends on the wire length and curvature, while coefficients G, A, and Q involves 
the cross-sectional geometry and current density distribution. 

Equation (1) is accurate to within (g/2R)2 and (g/l)2, where l is the wire length, R is the 
minimal radius of curvature, g is geometric mean distance of the wire cross section to itself 
(self-GMD). 

The value N is obtained by simple integration over the wire length; it is independent of a 
cross-section. For this reason, N is assumed a known value. 
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G, A, and Q are calculated via integration over the cross section. For the low-frequency 
case and direct current, they can be written in the SI form as 
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where gm, am и qm are, respectively, the geometric mean, arithmetic mean, and quadratic 
mean distances of the wire cross section S from itself. D is the distance between the utmost 
sides of the wire (D >> qm). 

The geometric mean, arithmetic mean, and quadratic mean distances are calculated as 
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Here ds1 and ds2 are differential of area associated with points P1 and P2 taken on the wire 
cross section S, η is the distance between P1 and P2, see Figure 1.  

 
Fig. 1. Base notations: A, B, C – vertices of triangle; a, b, c and α, β, γ – corresponding sides and 
angles; h and c1, c2 define integrals (9); P1 = (x1, y1), P2 = (x2, y2) – some points in (8). 

If the cross section lies on the plane xOy, then, using the Cartesian coordinates, we obtain 
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where subscripts 1 and 2 indicate respective points. 

For ordinary circular or rectangular cross sections, the self-inductance is obtained via 
double integration (5-7) with respect to coordinates resulting in quadruple one-dimensional 
integrals with fixed limits [5]. In the case of the triangular cross section, integration limits 
are variable. 

2 Self-inductance of a triangular wire 
Figure 1 represents an irregular triangle with sides a, b and c. A Cartesian coordinate system 
is applied so that the triangle lies in the xOy plane. Vertex C falls on the axis y, side AB is 

put along the axis x. It may be assumed without losing the generality that vertices A and B 
are opposite with respect to the origin. The distance from the origin is c1 for A and c2 for B. 

Then formulae (5-7) can be put into a combined form 
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where f1(y) = c1(y/h–1) and f2(y) = c2(1–y/h) are the lower and upper limits of integration with 
respect to x, the distance η comes from (8). 

Quadruple integration of (9) with respect to x1, y1, x2, y2 gives a set of relatively simple 
formulae for the triangular cross section. 

The geometric mean distance of the triangle from itself is calculated as 
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where α, β, γ substitutes the expressions (cosine formula) 
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equal to vertex angles (in radians), see figure 1; S substitutes the expression (Heronus 
formula) 
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equal to the triangle area S. 
The arithmetic mean distance of the triangle from itself is 
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The quadratic mean distance of the triangle from itself is 
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For an equilateral triangle with the side c formulae (10-12) are simplified to the form 
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The linear dependence gm = 0.308377ꞏc, followed from (13), appears to be in an excellent 
coincidence with the formula gm = 0.308382ꞏc, numerically evaluated in [6] with using 
Monte-Carlo method, see Equation (3.2.4) in that report. 

Evidently, formulae (10-15) are not sensible to what symbol a, b or c is employed for a 
triangle side. Hence, the formulae have the symmetrical form with respect to change of side 
notations. This may be considered as indirect evidence that the obtained formulae are correct. 
Also, correctness of the analytical formulae (10-15) may be justified numerically. 
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3 Numerical validation 
Let us assume that the vertices of the irregular triangle shown in figure 1 have the following 
coordinates A = (–1, 0), B = (3, 0), C = (0, 2). Then, a = √13, b = √5, c = 4 , S = 4, α = arccos 
5-0.5 ≈  1.107, β ≈ 0.588, γ ≈ 1.446. After substitution of these values to the analytical formulae 
(10-12), we obtain the results for this triangular wire as listed in the bottom line of table 1. 

To verify these results, we may numerically integrate the formulae (9). For this purpose 
every side of the triangle is divided in two halves. The midpoints are then connected by lines 
forming 4 identical triangular subareas. Each subarea, in turn, is divided into small triangles 
in the same way, as shown in Figure 2. The iteration procedure is repeated arriving, generally, 
to infinitesimal triangular subareas [6]. 
 

 
Fig. 2. Iteration scheme. Thick lines for the first subdivision K = 4, thin lines for the second 
subdivision to K =16. 

At each step the barycenter is calculated for every sub-area: 
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where k = 1…K is the number of sub-triangle, Ak, Bk, and Ck point out its vertices. 
After that, partials sums are iteratively calculated 
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where ΔS = S/K, ηik is the distance (8) between centers of i-th and k-th sub-triangles. 
Table 1 presents the results (16) of numerical calculations with increasing of K. The 

derived formulae enable quite simple assessment of the self-inductance of a triangular and 
may significantly reduce computation efforts required with numerical methods. 

Table 1. Analytical results obtained with formulae (10-15) vs. numerical integrals (16). 

K lngm am 𝒒𝒒𝐦𝐦𝟐𝟐  
4 +0.148179 0.972131 1.416667 
42 +0.069880 1.152456 1.770833 
43 +0.019471 1.189046 1.859375 
44 –0.001078 1.197132 1.881510 
45 –0.008227 1.199024 1.887044 
46 –0.010520 1.199482 1.888428 
47 –0.011220 1.199594 1.888774 
48 –0.011426 1.199622 1.888860 
49 –0.011486 1.199629 1.888882 

formulae (10-15) –0.011510 1.199631 1.888889 

4 Conclusion 
Though not much common, conductors with a triangular cross section find use in some 
practical applications. The proposed approach may also be adapted for other nontrivial 
geometries in case of direct current. For instance, TF coils of the ITER tokamak utilize 
conductors with cross sections shaped as a right-angular trapezoid. Applying triangulation, 
we obtain a combination of a rectangular and two identical triangles. The coil centerline is 
formed with a straight portion and six circular arcs. Their mutual inductances can be 
calculated with well-proven formulae [7]. 
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