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Abstract. Picking a part from an unorganized pile of parts requires an accurate vision system integrated 
with a robotic arm. A proper metric for gauging pose error is therefore indispensable. Pose error is a 
combination of an error in the position vector and an error in the orientation matrix. Pose errors of a system 
under test (SUT) are calculated by comparing the poses obtained with the SUT with those obtained using a 
ground truth (GT) system whose measurements are registered to the SUT coordinate frame. Typically, the 
position error is calculated as the length of a vector connecting the SUT and the registered GT positions, 
and the orientation error is determined as the angle of relative rotation between the SUT and the registered 
GT orientation. However, many parts processed in industrial bin picking applications have axial symmetry 
and for such parts, the orientation cannot be determined uniquely. This causes the common metric for 
orientation error to be ambiguous and misleading. We show that a better and more reliable orientation metric 
can be calculated as the angle between the axes of symmetry for a part in the SUT and in the registered GT 
coordinate frame.  

1 Introduction 
Bin picking is a frequently deployed solution in 
manufacturing to automate tasks such as assembly or 
kitting. Its goal is to autonomously pick up a single part 
from an unorganized pile of parts and pass it to the next 
stage of the automated process. Successful completion 
of this goal requires a well calibrated robot integrated 
with the vision system, which must provide to the robot 
controller with the pose of each part. A part’s pose (i.e., 
its position and orientation) needs to be accurately 
determined, to a degree related with a part’s size, so that 
a gripper can approach and grab the part. Of the 
performance metrics that can be used to determine the 
suitability of a vision system for a particular application, 
pose error is a prominent one [1, 2].  

However, pose error is usually not provided in the 
system’s specification and there are few, non-trivial 
reasons for it. First, a six degree of freedom (6DoF) pose 
is rarely directly measured. Typically, raw data acquired 
either from 2D images or 3D point clouds are processed 
using various algorithms which output the 6DoF poses 
of parts [3, 4]. This means that the same data processed 
by different algorithms or different quality data input to 
the same algorithm may yield different results. Second, 
pose measuring systems provide their output in their 
own coordinate frames. Thus, the pose measured with 
the system under test (SUT) cannot be directly 
compared with that provided by a ground truth (GT) 
system. To calculate error in the SUT pose, the GT data 
must first be registered to the SUT frame and the 
registration error propagates into SUT pose error. Third, 
some objects may have axial symmetry and multiple 
equivalent orientations. Therefore, the standard way of 
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gauging orientational misalignment as the angle of 
relative rotation between the SUT and the GT poses may 
be ambiguous and such objects are quite common in 
manufacturing applications. 

In this paper, we specifically describe a novel 
method of gauging pose error of parts with axial 
symmetry that are randomly piled in a bin. We show that 
a better metric for such parts requires first fitting the 
computer-aided-design (CAD) model of the part to the 
SUT and GT point cloud data, and then reporting 
orientation error as the angle between the axes of 
symmetry of the two fitted CAD models. Attempts to 
derive pose errors directly from the 3D points acquired 
by the SUT and the GT sensors often yields ambiguous 
and incorrect results. 

2 Previous work 
For systems that determine pose from a set of markers, 
the influence of noise and bias in the marker locations 
on the derived pose was extensively studied [5, 6] and 
the standard for evaluating the performance of such 
systems was adopted [7]. For other systems, which do 
not rely on markers but derive pose from 3D point 
clouds, some bounds on pose variation may be obtained 
if the bounds of the noise affecting the 3D points are 
known [8], but such methods fail for objects with 
symmetry. The development of standards for 3D 
imaging system performance for use in automating the 
manufacturing process are an ongoing effort [9].  

Symmetry of parts was specifically addressed in 
Maximum Symmetry-Aware Surface Distance (MSSD) 
used in benchmarking the 6D Object Estimation (BOP) 
challenge [10]. This metric has unit of length (e.g., mm) 
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and requires prior determination of the symmetries that 
characterize a given part [11-13]. The MSSD metric is 
also used in a recently initiated perception challenge for 
bin picking [14].  

3 Apparatus and test setup 

In this work, two different systems were used to obtain 
the 3D data. The first one was a structured light camera 
mounted in a fixed position, the SUT. The second one 
was a laser line probe mounted on an Articulating Arm 
Coordinate Measuring Machine (AACMM), used as a 
GT system. The GT system acquires the data from 
various directions and automatically registers data. The 
SUT outputs data in the format of an organized 3D point 
cloud ࢙ of size ( ܰ௪ , ܰ , 3), derived from the depth 
images of size ( ܰ௪ , ܰ), such as shown in Fig. 1. 
The GT system outputs an unorganized 3D point cloud ࢍ. Both systems acquire the 3D point clouds in their 
respective coordinate frames.  
 

 
Fig. 1. Example of a depth image acquired with the SUT. 

Two different kinds of symmetric parts were used: 
M8 socket head cap screws and M12 hex nuts, both 
made from the same material. A bin was randomly filled 
with one kind of parts and scanned with both systems. 
This step was repeated for ܭ = 3 different instances of 
random piles in the bin and for both kinds of parts.  

4 Data processing 
The data from the SUT were processed using the 
Segment Anything Model (SAM) algorithm [15].  SAM 
was applied to the depth images acquired by the SUT to 
automatically segment individual parts in the 2D Depth 
image of the bin. Once the resulting binary 2D masks of 
parts were obtained for each k-th instance of a pile in the 
bin (݇ ≤ ܯ ,(ܭ = 20 masks were randomly selected, 
and their corresponding subsets of 3D points ࡿ, were 
obtained, ݉ = 1, …  This procedure was .(see Fig. 2) ܯ,
repeated for both the M8 screws and M12 nuts. 

4.1 Registering GT to SUT frame 

For each k-th instance of a pile of parts in a bin acquired 
by the SUT and the GT, the top part of a bin was 
manually segmented. The Iterative Closest Point (ICP) 
procedure was then used to get the rigid body 

transformation, ࢀ, which can be used to register the GT 
frame to the SUT frame [16]. The outcome of this 
procedure is shown in Fig. 3. As the exit condition from 
ICP, the maximum number of iterations ܫ௫ = 10 was 
used. 

 

 
Fig. 2. Example of segmentation masks generated 
automatically by SAM applied to 2D depth image (upper plot) 
and the corresponding 3D point cloud (lower graph). 
Segmented parts colored in blue.  

 

 
Fig. 3. Example of registering segmented bin from GT frame 
(black points) to SUT frame (blue points). For better 
visualization, portions of data are not displayed.  

Once ࢀ was determined for each k-th instance of a 
pile, the GT data were transformed to the SUT 
coordinate frame. Then, for each selected earlier subset, ࡿ, in the SUT data, the corresponding subset of 3D 
points, ࡳ, from the transformed GT data was 
manually segmented.  

4.2 Getting pose error without CAD fitting 

For each k-th pile instance and each selected m-th part, 
the subset of 3D points, ࡳ was registered to ࡿ using 
ICP (to simplify notation, the part index ݅ is used, ݅ =1, … ܯ, ×  The outcome of this procedure is shown .(ܭ
in Fig. 4. Initial pose for ICP was selected as in [17]. 
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This step resulted in the individual transformations ࢀ ࡾ)= ,   is the࢚  is the rotation matrix andࡾ ), where࢚
translation vector. In this case, the position error   is 
expressed as the length of the translation as 

  =  ‖,      (1)࢚‖ 
 

and the angle ߚ of rotation ࡾ is used as the orientation 
error, where  

(ࡾ)ߚ  = (ࡾ)ݎݐ))ݏܿݎܽ − 1) 2⁄ )   (2) 
 
and (ࡾ)ݎݐ is the trace of a matrix ࡾ.  
 

 
Fig. 4. Example of registering segmented 3D points ࡳ 
acquired by GT (black dots) to segmented ࡿ points (blue) 
acquired by SUT.  

4.3 Calculating pose error using CAD fitting 

Appropriate CAD models were also fitted to ࡿ and ࡳ 
using ICP for each ݅ (i.e., each k-th pile instance and 
each selected m-th part), as shown in Fig. 5. This 
procedure yielded orientation matrices ષௌ, and ષீ,, 
and translation vectors ࣎ௌ, and ீ࣎,. Based on these 
quantities, the orientation error ߱(ષ), calculated as in 
(2), was determined as the angle of rotation of the 
relative rotation matrix ષ as 

 ષ = ષௌ, ષீ,ିଵ     (3) 
 
where ષିଵ is the inverse of matrix ષ. Position error ݁ 
was then calculated as  
 ݁ =  ฮ࣎ௌ, −  ฮ.    (4),ீ࣎
 
In addition, another orientation error ߙ was calculated 
as the angle between the axes of symmetry ࢛ௌ,  and ீ࢛, 
as 
ߙ  = ௌ,࢛൫ݏܿݎܽ ∙  ൯   (5),ீ࢛
 
where ฮ࢛ௌ,ฮ = ฮீ࢛,ฮ = 1 and “∙” is the dot product. 
Vector ࢛ௌ,  was aligned with the axis of symmetry of a 
CAD model fitted to ࡿ and ீ࢛, was aligned with the 

axis of symmetry of a CAD model fitted to ࡳ, as shown 
in Fig. 6.  
 

 
Fig. 5. Examples of CAD (in red) fitted to segmented 3D 
points (black dots) which belong to a): ࡿ acquired by SUT; b) ࡳ acquired by GT and transformed to SUT frame. Blue 
arrows represent axes of symmetry determined from CAD 
models.  

 

 
Fig. 6. Two CAD models fitted to ࡿ and the corresponding ࡳ 
subsets. Arrows represent the axes of symmetry, parallel to the 
unit vectors ࢛ௌ and ீ࢛ , the angle ߙ is an acute angle between 
unit vectors.  
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5 Results 
The outcome of the procedure described in Section 4.2. 
is presented in Fig. 7 for a bin filled with M2 socket head 
cap screws. In this procedure, CAD models were not 
used and the pose error was calculated by registering the 
subset of 3D points ࡳ to ࡿ and by calculating the 
position error   from (1) and the orientation error ߚ 
from (2). In addition, the residual ICP registration error ݁ is plotted in Fig. 7a and a distance Δ  between two 
centroids ࡿഥ and  ࡳഥ as 
 Δ = ഥࡿ‖ −  ഥ‖  .   (6)ࡳ 
 
The corresponding results for a bin filled with M12 nuts 
are shown in Fig. 8.  
The outcome of the procedure described in Section 4.3 
is presented in Fig. 9 for a bin filled with M8 screws. In 
this procedure, CAD models were fitted to each subset 
of 3D points ࡿ and ࡳ, and the resulting two 
transformations ൫ષௌ, , ௌ,൯ and ൫ષீ,࣎ ,  ൯ were used to,ீ࣎
characterize the error of the pose provided by the SUT. 
In Fig. 9a, the residual ICP error of fitting CAD to ࡳ is 
plotted. Fig. 9b shows distance ݁ (calculated from (4)) 
between the positions of the fitted CAD models. In Fig. 
9c, the rotation angle ߱ of a matrix of relative rotation ષ determined from (3) is plotted. Finally, in Fig. 9d, the 
angle ߙ (calculated from (5)) and illustrated in Fig. 6, 
is plotted.  

The corresponding results for a bin filled with M12 
nuts are shown in Fig. 10. 
 
 

 
Fig. 7. Results for M8 screws: a) ICP error ݁ of registering 
point cloud ࡳ to ࡿ; b) length  of the translation vector from 
ICP; c) rotation angle ߚ  from ICP; d) distance ߂ between the 
centroids of ࡳ and ࡿ. 

 
Fig. 8. Results for M12 nuts: a) ICP error ݁ of registering 
point cloud ࡳ to ࡿ; b) length  of the translation vector from 
ICP; c) rotation angle ߚ  from ICP; d) distance ߂ between the 
centroids of ࡳ and ࡿ. 
 

 
Fig. 9. Results for M8 screws: a) ICP error ݁ of registering 
CAD to ࡳ; b) distance ݁ between the positions of CAD 
models fitted to ࡳ and ࡿ; c) angle  ߱ of relative rotation 
matrix ࢹ in (3); d) angle ߙ between axes of symmetry of 
CAD models fitted to ࡳ and ࡿ.  
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Fig. 10. Results for M12 nuts: a) ICP error ݁ of registering 
CAD to ࡳ; b) distance ݁ between the positions of CAD 
models fitted to ࡳ and ࡿ; c) angle  ߱ of relative rotation 
matrix ࢹ in (3); d) angle ߙ between axes of symmetry of 
CAD models fitted to ࡳ and ࡿ.  

 

Table 1. Summary of mean errors 

Mean Errors Screws M8 Nuts M12 

ܮ       [mm] 13.0 10.0 

  ݁̅      [mm] 0.50 1.11 

  ݁̅     [mm] 0.83 0.32 

 39.43 96.69 [mm]         ̅  

  Δഥ         [mm] 1.29 2.01 

  ݁̅         [mm] 0.87 0.89 

 4.40 11.82 [deg]        ߚ̅  

  ഥ߱        [deg] 9.75 141.48 

 ത        [deg] 1.88 1.65ߙ  

6 Discussion 
The ICP procedure was used in this study to register 
pairs of experimentally acquired, segmented subsets of 
points, such as shown in Fig. 4, or to fit CAD models to 
the experimental points, such as shown in Fig. 5. The 
rigid body transformations (rotations and translations) 
resulting from ICP were then used to evaluate different 
metrics, such as orientation errors ߚ, ߙ, ߱  and position 
errors   or ݁. Therefore, it is important to ensure that 
the poses obtained from the ICP procedure are correct, 
especially as the ICP process can be easily trapped in 

wrong local minima and can provide incorrect poses 
when an initial pose is not properly chosen.  

All outcomes of ICP, such as displayed in Fig. 4 and 
Fig. 5, were visually inspected, and the corresponding 
residual errors were checked. Examples of residual 
errors ݁  are plotted in Fig. 7a and Fig. 8a, and for ݁   
in Fig. 9a and Fig. 10a. Compared with the smallest size ܮ  of the bounding box containing the part, the 
registration was quite accurate as evidenced by small 
mean ICP errors ݁̅ and ݁̅ in Table 1. Yet, the large 
values of some of the reported errors are in striking 
disagreement with visual evaluations and with the small 
values of the residual ICP errors.  

Attempts to characterize pose error without fitting 
CAD models (as described in Section 4.2) yielded large 
orientation errors ߚ displayed in Fig. 7c and Fig. 8c, see 
average errors ̅ߚ for screws and nuts in Table 1. The 
corresponding position errors   plotted in Fig. 7b and 
Fig. 8b seem to indicate a huge displacement between ࡿ and ࡳ 3D points  (blue and black points in Fig. 4), 
which contradicts visual inspection and the 
displacements between centroids Δ  plotted in Fig. 7d 
and Fig. 8d (compare also mean position errors ̅ with 
mean displacements Δഥ in Table 1).  

It appears that incorrect displacement errors  , 
which are the length of the translation vectors ࢚ from 
ICP registration as in (1), are a consequence of 
ambiguous rotations ࡾ resulting from registering ࡳ to ࡿ. In the ICP procedure, the translation vector ࢚ is 
obtained after the rotation matrix ࡾ is calculated as 

࢚  = ഥࡿ  − ࡾ   ഥ ,    (7)ࡳ 
 

where ࡿഥ and  ࡳഥ are the corresponding centroids. If line-
of-sight sensors are used to acquire 3D data (as is the 
case in many industrial bin picking applications) then 
the centroids ࡿഥ and ࡳഥ are not located on the part’s axis 
of symmetry. Thus, the ambiguity of ࡾ in (7) must 
affect the vector ࢚ and this makes   an unsuitable 
metric for gauging position error (note the very strong 
correlation between   and ߚ, displayed in Fig. 7b,c and 
Fig. 8b,c). Therefore, attempts to characterize the error 
of the pose based only on registration of the segmented 
3D points ࡳ to ࡿ will be unsuccessful for parts with 
symmetry. 

Deriving pose metrics from CAD models fitted to 
points ࡳ and ࡿ, such as shown in Fig. 5 and Fig. 6, is 
also challenging. While the position error ݁ defined in 
(4) takes on reasonably small values in Fig. 9b and Fig. 
10b (see mean errors ݁̅ in Table 1), the orientation error ߱, calculated from the matrix of relative rotation ષ in 
(3) still has misleadingly large values ߱ plotted in Fig. 
9c and Fig. 10c (see mean orientation errors ഥ߱ in Table 
1).  

It is worth noting that the ambiguity of the rotations ષௌ, and ષீ, (from which ષ is calculated) does not 
affect the translation vectors ૌௌ, and ૌீ, (from which 
the position errors ݁  are calculated) and, unlike position 
errors   which are flawed by large values, ݁ provide 
appropriately small position errors. The root cause of the 
difference between   and ݁ is that the centroids of the 
CAD models are located on the axes of symmetry and 
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therefore, ambiguities in rotations ષௌ, and ષீ, around 
those axes do not affect translation vectors ૌௌ, and ૌீ, .  

It appears that the angle ߙ between the axes of 
symmetry, as illustrated in Fig. 6, provides a more 
realistic estimate of the orientation error, as shown in 
Fig. 9d, Fig. 10d and characterized by mean angles ߙത in 
Table 1.  

For parts used in this study (M8 socket head cap 
screws and M12 hex nuts), the mean angle ߙത was 
sufficient to describe rotational misalignment, but 
generally, rotations around the axes of symmetry may 
also contribute to the overall error. In such cases, the 
total error will have a contribution from rotating ீ࢛ 
vector to ࢛ௌ, as in Fig. 6, and then an additional angular 
component resulting from a rotation around ࢛ௌ. 

Using CAD models fitted to SUT and GT data and 
the mean angle ߙത as an orientation error may be more 
practical than MSSD in bin picking applications. To 
execute a successful pick, planning a gripper’s approach 
to a part requires knowledge of the full CAD surface, 
including sections of the surface occluded during data 
collection. Therefore, the angular error of the CAD 
orientation may be more useful than the distance 
provided by MSSD, which is calculated only from 
points covering a fraction of the part’s surface within 
line-of-sight of the sensor.  

7 Conclusions 
For parts with axial symmetry, the commonly used 
orientation error (defined as the angle of relative rotation 
between CAD models fitted to SUT and GT data) 
provides estimates which are unreliable and inconsistent 
with visual inspection. The angle between two axes of 
symmetry corresponding to two fitted CAD models are 
more useful in gauging the orientation error for such 
parts. Position error defined as the distance between the 
positions of two fitted CAD models also provides a 
useful metric.  

Use of CAD models is crucial as the errors derived 
from registering two subsets of 3D points acquired by 
the SUT and the GT provide a misleading metric, which 
is inconsistent with visual inspection of the two datasets.  
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