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Abstract. The knowledge of alpha optical potential is important for determining the nuclear reaction rates.
natIn(α, α)natIn elastic scttering cross-sections have been measured at energies Elab = 26 and 29 MeV above
the coulomb barrier. A set of local optical potential parameters was obtained from the experimental elastic
scattering data. In comparison to the existing global potential parameters, the potential parameters extracted
in this work show a satisfactory result. The local potential are used to calculate the 115In(α, γ) reaction cross-
section.

1 Introduction

The majority of heavy nuclei are synthesized in stars by
neutron capture and β−decays in the s- or r-process. How-
ever, 30−35 neutron deficient nuclei (74Se −196Hg), of-
ten called p-nuclei, are produced via photo-disintegration
rather than neutron capture [1–3]. In photo-disintegration
process, p-nuclei are formed by the (γ,n), (γ, α) or (γ,p)
reactions from s or r-seed nuclei in a high γ-flux scenario.
The seed nuclei are initially moved towards the proton-rich
side via a series of (γ,n) reactions. The (γ,p) and (γ, α) re-
actions are more rapid and produced stable elements with
lower atomic number, when the neutron separation energy
increases. It has been found that (γ,p) reactions are cru-
cial for the formation of lower mass p-nuclei, whereas
(γ, α) reactions produce medium and heavy masses. Due
to the better availability of ion beams over γ-beams, the
inverse reaction cross-sections on p-nuclei are measured
and gamma induced cross-sections are extracted using the
reciprocity theorem and principle detailed balance in the
framework of statistical model. Statistical model calcula-
tion is sensitive to the choice of the nuclear input parame-
ters. One of the sensitive input parameters is the entrance
channel optical potential. The role of the α-optical poten-
tial is significant for the study of the (α, γ) reaction.

There are numerous global alpha optical model poten-
tials [4, 5], but they are unable to adequately explain the
(α, γ) reaction data. The 115In(α, γ) reaction requires accu-
rate knowledge of the α-optical potential at low energies.
However, due to the dominance of coulomb part, the elas-
tic scattering measurements need to be done at above bar-
rier energies. In this study, elastic scattering angular dis-
tribution measurements of natIn(α, α) have been performed
at two different energies (E = 26 and 29 MeV) above the
∗e-mail: dipali.basak@saha.ac.in

Coulomb barrier and obtained local Wood-Saxon optical
potential parameters set.

2 Experimental Setup

The experiment has been carried out at the K-130 Cy-
clotron facility at VECC, Kolkata. The vacuum evapo-
ration technique was used to prepare the 99.999% chem-
ically pure natIn targets on Al backing. By measuring
the energy loss of an α-particle from a known 3-line α-
source (239Pu, 241Am, 244Cm), the thickness of the target
was determined. The thickness of indium was measured
to be around 66 µg/cm2, which is approximately equiva-
lent to 3.32×1017 atoms/cm2 and roughly 730 µg/cm2 for
aluminum backing. The uncertainty of the target thick-
ness is about 6−7%. The experimental setup is shown
in Fig. 1. Elastic scattering data between θ = 23◦−140◦

angular range was measured at two different energies (E
= 26 and 29 MeV) above the Coulomb barrier. In this
experiment, the cross-section was measured at a forward
angle using four silicon surface barriers (SSB) ∆E-E tele-
scopes and at a backward angle using a 16 channel silicon
strip ∆E-E telescope. SSB detectors used as ∆E have a
thickness of 150 µm, whereas detectors used as E have a
thickness ranging from 500 to 3000 µm. The detectors
used as ∆E and E, respectively, for strip telescopes have
thicknesses of 52 µm and 1034 µm. A 100 angle of sep-
aration between each of the SSB telescopes, which were
positioned on the upper turntable. There is 10 angular sep-
aration between each strip of a strip telescope mounted on
the lower turntable. Approximately 4 mm diameter circu-
lar slits were used as collimators for the SSB telescope.
The collimated area of each strip is 6×3 mm2. Solid an-
gles are 2.80×10−4 sr for SSB telescopes and 5.21×10−4 sr
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Figure 1. Experimental setup for elastic scattering
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Figure 2. Energy Spectra for natIn(α, α) reaction at 29 MeV

for strip telescopes. Beam current varies between 10−15
nA during the experiment.

3 Data Analysis and Results

Fig. 2 depicts the energy spectrum of a scattered α-particle
at 37◦ angle at a beam energy of 29 MeV. Based on the
total count rate of the scattered α-particle from the target
nucleus at a particular angle, the differential cross-section
for that angle was calculated using the given equation,

dσ
dΩ
=

A(θ)
NIΩ

(1)

Where I is equal to the total number of α-particle bom-
barding the target nucleus per unit time and N be surface
density of the target material. Ω is the solid angle that the
scattered particle can be detected by the detector.

The energy of the surface barrier telescopes and strip
telescope has been calibrated using the known 229Th α-
source (4.9, 5.8, 6.3, 7.1, and 8.4 MeV) and the α-peak ob-
tained from the 197Au(α, α) scattering at Elab = 26, 29, 32,
and 40 MeV. The measured differential cross-sections are
normalised using the theoretical Rutherford cross-sections

calculated from Ref.[6]. Fig. 3 displays the experimental
normalized elastic scattering cross-section at two energies.

Complex optical model potential in combination of
Coulomb potential (Vc) and Nuclear potential (VN) is
given by

U(r) = Vc(r) + VN(r) (2)

Coulomb potential Vc(r) is calculated from the uni-
formly charged shpere of radius Rc (Rc = rc(A1/3

t + A1/3
t ))

Nuclear potential consists of real (V(r)) and imaginary part
(W(r)). The volume wood saxon potential is used to pa-
rameterize the real part of the nuclear potential, while the
surface and volume wood saxon potentials have been taken
into account for the imaginary part.

V(r) = V0 fv(r)

W(r) =
(
W0 fw(r) +Ws

d fs

dr

)

Volume real, volume imaginary, and surface imaginary po-
tential depths are represented by the V0 ,W0 , Ws, respec-
tively. Wood Saxon form factor is given by

fi(r) =
1

1 + exp r−Ri
ai

(3)

Where

Ri = ri(A
1/3
t + A1/3

t ) i = v, w, s

By using the search code SFRESCO[7] to fit the an-
gular distribution of normalized differential cross-section
data, a new set of potential parameters was obtained. The
local potential parameters with reduced χ2 values are listed
in Table. 1 and fittings are shown by red solid line in Fig. 3

Elastic scattering cross-sections were computed us-
ing the widely used global optical potential McFadden-
Satchler and Avrigeanu with the code FRESCO [7] and
compared to the experimental results.

4 Discussion

In this study, normalised elastic scattering cross-section
data have been fitted and local optical potential parameters
were obtained at two energies E = 26 and 29 MeV. The ex-
perimental elastic scattering angular distribution data can-
not be adequately explained by the two available global
α-optical potentials in this energy range. A suitable local
optical potenital is needed to explain the obtained experi-
mental cross section.

The local optical potential has a real volume part and
uses both volume and surface terms for the imaginary part.
The spin-orbit term needs to be included in the poten-
tial form because indium has a non−zero spin parity ( 9

2
+).

However, in Ref. [8] it has been shown that for this sys-
tem, the spin-orbit impact is minimal. The local optical
model potential parameters obtained from elastic scatter-
ing are extrapolated to lower energy and used in the cal-
culation of 115In(α, γ) reaction cross section using TALYS

Figure 3. Experimental elasic scattering cross-section at Elab = 26, 29 MeV. Theroretical calculations have been done with different
global α-optical potential

Table 1. Local optical potential parameters set

Elab Volume real Volume imaginary Surface imaginary χ2/N
(MeV) V0 rv av Wv rw aw Ws rs as

26 49.01 1.11 0.53 8.07 1.16 0.42 13.99 1.11 0.22 1.8
29 46.35 1.15 0.53 10.02 1.16 0.42 9.99 1.15 0.26 2.4
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Figure 4. 115In(α, γ) reaction cross-section. Exerimental reac-
tion cross-section data from [10] compared to the theoretical pre-
dictions using local optical potential

code [9]. The local α-omp from the present elastic scat-
tering measurement satisfactorily explain the experimen-
tal 115In(α, γ) [10] excitation function mainly at higher en-
ergies and overestimated at lower energies, as shown in
Fig 4. The (γ, α) cross-sections producing 115In p-nucleus
can then be determined using principle of detailed balance.
Future plan of this work is to compare the (γ, α) rates with
available abundance data.
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Figure 2. Energy Spectra for natIn(α, α) reaction at 29 MeV

for strip telescopes. Beam current varies between 10−15
nA during the experiment.

3 Data Analysis and Results

Fig. 2 depicts the energy spectrum of a scattered α-particle
at 37◦ angle at a beam energy of 29 MeV. Based on the
total count rate of the scattered α-particle from the target
nucleus at a particular angle, the differential cross-section
for that angle was calculated using the given equation,

dσ
dΩ
=
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Where I is equal to the total number of α-particle bom-
barding the target nucleus per unit time and N be surface
density of the target material. Ω is the solid angle that the
scattered particle can be detected by the detector.

The energy of the surface barrier telescopes and strip
telescope has been calibrated using the known 229Th α-
source (4.9, 5.8, 6.3, 7.1, and 8.4 MeV) and the α-peak ob-
tained from the 197Au(α, α) scattering at Elab = 26, 29, 32,
and 40 MeV. The measured differential cross-sections are
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calculated from Ref.[6]. Fig. 3 displays the experimental
normalized elastic scattering cross-section at two energies.

Complex optical model potential in combination of
Coulomb potential (Vc) and Nuclear potential (VN) is
given by
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Coulomb potential Vc(r) is calculated from the uni-
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(W(r)). The volume wood saxon potential is used to pa-
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surface and volume wood saxon potentials have been taken
into account for the imaginary part.
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gular distribution of normalized differential cross-section
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local potential parameters with reduced χ2 values are listed
in Table. 1 and fittings are shown by red solid line in Fig. 3
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code [9]. The local α-omp from the present elastic scat-
tering measurement satisfactorily explain the experimen-
tal 115In(α, γ) [10] excitation function mainly at higher en-
ergies and overestimated at lower energies, as shown in
Fig 4. The (γ, α) cross-sections producing 115In p-nucleus
can then be determined using principle of detailed balance.
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available abundance data.
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