Open Access
Issue |
EPJ Web Conf.
Volume 326, 2025
International Conference on Functional Materials and Renewable Energies: COFMER’05 5th Edition
|
|
---|---|---|
Article Number | 05005 | |
Number of page(s) | 4 | |
Section | Smart Energy systems: Storage, Management, Integration | |
DOI | https://doi.org/10.1051/epjconf/202532605005 | |
Published online | 21 May 2025 |
- Wieland, R., Kuhls, K., Lentz, H. H., Conraths, F., Kampen, H., & Werner, D. (2021). Combined climate and regional mosquito habitat model based on machine learning. Ecological Modelling, 452, 109594. [CrossRef] [Google Scholar]
- Carson, B. (2021). L&D’s playbook for the digital age. Association for Talent Development. [Google Scholar]
- Varro, L., & Kamiya, G. (5). 5 ways Big Tech could have big impacts on clean energy transitions. [Google Scholar]
- Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. nature, 529(7587), 484-489. [CrossRef] [Google Scholar]
- Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., ... & Ng, A. (2012). Large scale distributed deep networks. Advances in neural information processing systems, 25. [Google Scholar]
- Masanet, E., Shehabi, A., Lei, N., Smith, S., & Koomey, J. (2020). Recalibrating global data center energy-use estimates. Science, 367(6481), 984-986. [CrossRef] [PubMed] [Google Scholar]
- Kamiya, G., & Kvarnström, O. (2019). Data centres and energy–from global headlines to local headaches?. [Google Scholar]
- Hölzle, U. (2020). Data centers are more energy efficient than ever. Available from Google: https://www. blog. google/outreach-initiatives/sustainability/data-centers-energyefficient. [Google Scholar]
- Kirvan, P. (2022). How much energy do data centers consume. [Google Scholar]
- Maharana, K., Mondal, S., & Nemade, B. (2022). A review: Data pre-processing and data augmentation techniques. Global Transitions Proceedings, 3(1), 91-99. [CrossRef] [Google Scholar]
- Çetin, V., & Yıldız, O. (2022). A comprehensive review on data preprocessing techniques in data analysis. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 299-312. [Google Scholar]
- Luengo, J., García-Gil, D., Ramírez-Gallego, S., García, S., & Herrera, F. (2020). Big data preprocessing. Cham: Springer, 1, 1-186. [Google Scholar]
- Ingle, D. R., Waghmare, S. R., Patil, V., & Chavan, S. (2022, December). Identification of Vector Borne Disease Spread Using Big Data Analysis. In 2022 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON) (pp. 1-8). IEEE. [Google Scholar]
- Pima Indians Diabetes Database. Kaggle. https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.