Open Access
| Issue |
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
|
|
|---|---|---|
| Article Number | 01007 | |
| Number of page(s) | 8 | |
| DOI | https://doi.org/10.1051/epjconf/202533701007 | |
| Published online | 07 October 2025 | |
- Piparo, D. et al., RDataFrame: Easy Parallel ROOT Analysis at 100 Threads, EPJ Web Conf. 214, 06029 (2019). 10.1051/epjconf/201921406029 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Padulano, V.E. et al., Leveraging State-of-the-Art Engines for Large-Scale Data Analysis in High Energy Physics, Journal of Grid Computing 21 (2023). 10.1007/s10723023-09645-2 [Google Scholar]
- Zaharia, M. et al., Spark: Cluster Computing with Working Sets, in 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 10) (USENIX Association, Boston, MA, 2010), https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets [Google Scholar]
- Rocklin, M., Dask: Parallel Computation with Blocked algorithms and Task Scheduling, in SciPy (2015), https://api.semanticscholar.org/CorpusID:63554230 [Google Scholar]
- The ROOT Team, ROOT Reference Guide - ROOT::RDataFrame Class Reference, accessed: 4th February 2025, https://root.cern/doc/master/classROOT_1_ 1RDataFrame.html/ [Google Scholar]
- Held, A., Shadura, O., The IRIS-HEP Analysis Grand Challenge, p. 235 (2022). 10.22323/1.414.0235 [Google Scholar]
- Padulano, V.E. et al., First implementation and results of the Analysis Grand Challenge with a fully Pythonic RDataFrame, EPJ Web of Conf. 295, 06011 (2024). 10.1051/epjconf/202429506011 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Piparo, D. et al., SWAN: a Service for Interactive Analysis in the Cloud, Future Gener. Comput. Syst. 78, 1071 (2018). 10.1016/j.future.2016.11.035 [CrossRef] [Google Scholar]
- The ROOT Team, ROOT Manual - Python interface: PyROOT, accessed: 4th February 2025, https://root.cern/manual/python/ [Google Scholar]
- Naumann, A. et al., ROOT for the HL-LHC: data format (2022), 2204.04557. [Google Scholar]
- Chen, T., Guestrin, C., XGBoost: A Scalable Tree Boosting System, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, NY, USA, 2016), KDD ’16, pp. 785–794, ISBN 978-1-45034232-2, http://doi.acm.org/10.1145/2939672.2939785 [Google Scholar]
- The ROOT Team, RDataFrame implementation of the Analysis Grand Challenge, accessed: 4th February 2025, https://github.com/root-project/analysis-grand-challenge [Google Scholar]
- Boulis, J, Benchmarking Distributed Analysis at the Jülich HPC Center. CERN openlab Summer Student Lightning Talks (1/2) (2023), https://cds.cern.ch/record/2868375 [Google Scholar]
- Mehrabi, A., Hahnfeld, J., Padulano, V.E., Evaluation of HPC Storage Systems for HEP Analysis (2024), https://doi.org/10.5281/zenodo.13847467 [Google Scholar]
- Sciaba, A. et al., A Pilot Analysis Facility at CERN, Architecture, Implementation and First Evaluation (2024), https://indico.cern.ch/event/1338689/contributions/6010680/ [Google Scholar]
- Peters, A.J., Sindrilaru, E.A., Adde, G., EOS as the present and future solution for data storage at CERN, J. Phys.: Conf. Ser. 664 (201). 10.1088/1742-6596/664/4/042042 [Google Scholar]
- Thain, D., Tannenbaum, T., Livny, M., Distributed computing in practice: the Condor experience., Concurrency - Practice and Experience 17, 323 (2005). [CrossRef] [Google Scholar]
- Czurylo, M. et al., Seamless transition from TTree to RNTuple analysis with RDataFrame (2024), https://indico.cern.ch/event/1330797/contributions/5796495/ [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

