Open Access
Issue
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
Article Number 01097
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/202533701097
Published online 07 October 2025
  1. V. Gaitan Alcalde, Ph.D. thesis, Autón. U. (1993) [Google Scholar]
  2. C.S. Lindsey, B.H. Denby, H. Haggerty, K. Johns, Real Time Track Finding in a Drift Chamber with a VLSI Neural Network, Nucl. Instrum. Meth. A 317, 346 (1992). 10.1016/0168-9002(92)90628-H [Google Scholar]
  3. Łukasz Kamil Graczykowski, M. Jakubowska, K.R. Deja, M. Kabus, Using Machine Learning for Particle Identification in ALICE (2022), 2204.06900, https://arxiv.org/abs/2204.06900 [Google Scholar]
  4. J. Gonski, Learning by machines, for machines: Artificial Intelligence in the world’s largest particle detector (2024), https://atlas.cern/Updates/Feature/Machine-Learning [Google Scholar]
  5. D. Valsecchi, 2nd CERN IT ML workshop Report from CMS (2023), https://indico.cern.ch/event/1298990/#11-cms [Google Scholar]
  6. T. Likhomanenko, P. Ilten, E. Khairullin, A. Rogozhnikov, A. Ustyuzhanin, M. Williams, LHCb Topological Trigger Reoptimization, Journal of Physics: Conference Series 664, 082025 (2015). 10.1088/1742-6596/664/8/082025 [Google Scholar]
  7. CMS Collaboration, CMS releases open data for Machine Learning (2019), http://opendata.cern.ch/docs/cms-releases-open-data-for-machine-learning [Google Scholar]
  8. H. Qu, C. Li, S. Qian, Particle transformer for jet tagging (2024), 2202.03772, https://arxiv.org/abs/2202.03772 [Google Scholar]
  9. G. Kasieczka, B. Nachman, D. Shih, R&D Dataset for LHC Olympics 2020 Anomaly Detection Challenge (2020) [Google Scholar]
  10. R. Brun, F. Rademakers, ROOT — An object oriented data analysis framework, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 389, 81 (1997), New Computing Techniques in Physics Research V. https://doi.org/10.1016/S0168-9002(97)00048-X [Google Scholar]
  11. The HDF Group, Hierarchical Data Format, version 5, https://github.com/HDFGroup/hdf5 [Google Scholar]
  12. D. Vohra, Apache Parquet (Apress, Berkeley, CA, 2016), pp. 325–335, ISBN 978-1-4842-2199-0, https://doi.org/10.1007/978-1-4842-2199-0_8 [Google Scholar]
  13. C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith et al., Array programming with NumPy, Nature 585, 357 (2020). 10.1038/s41586-020-2649-2 [CrossRef] [PubMed] [Google Scholar]
  14. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin et al., TensorFlow: Large-scale machine learning on heterogeneous systems (2015), software available from tensorflow.org, https://www. tensorflow.org/ [Google Scholar]
  15. J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky, B. Bao, P. Bell, D. Berard, E. Burovski et al., PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation, in 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2 (ASPLOS ’24) (ACM, 2024), https://pytorch.org/assets/pytorch2-2.pdf [Google Scholar]
  16. TensorFlow developers, Better performance with the tf.data API, https://www. tensorflow.org/guide/data_performance [Google Scholar]
  17. Hugging Face developers, Hugging Face Datasets, https://huggingface.co/docs/datasets/index [Google Scholar]
  18. A. Hannun, J. Digani, A. Katharopoulos, R. Collobert, MLX: Efficient and flexible machine learning on apple silicon (2023), https://github.com/ml-explore [Google Scholar]
  19. Ray developers, Ray Data, https://docs.ray.io/en/latest/data/data.html [Google Scholar]
  20. weaver-core developers, weaver-core, https://github.com/hqucms/weaver-core [Google Scholar]
  21. D. Piparo, P. Canal, E. Guiraud, X. Valls Pla, G. Ganis, G. Amadio, A. Naumann, E. Tejedor Saavedra, RDataFrame: Easy Parallel ROOT Analysis at 100 Threads, EPJ Web Conf. 214, 06029 (2019). 10.1051/epjconf/201921406029 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.