Open Access
Issue
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
Article Number 01098
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/202533701098
Published online 07 October 2025
  1. ATLAS Collaboration, ATLAS Experiment at the CERN Large Hadron Collider, JINST 3, S08003 (2008). [Google Scholar]
  2. J. Elmsheus er et al., Overview of the ATLAS distributed computing system, EPJ Web Conf. 214, (2019). [Google Scholar]
  3. S. Gonzalez de la Hoz et al., Computing activities at the Spanish Tier-1 and Tier-2s for the ATLAS experiment towards the LHC Run 3 period, EPJ Web Conf. 245, (2020). [Google Scholar]
  4. Worldwide LHC Computing Grid project: http://wlcg.web.cern.ch [Google Scholar]
  5. dCache: https://www.dcache.org [Google Scholar]
  6. Lustre: https://www.lustre.org [Google Scholar]
  7. StoRM: http://italiangrid.github.io/storm/ [Google Scholar]
  8. HTCondor: https://htcondor.org [Google Scholar]
  9. M. Ellert et al., Advanced Resource Connector middleware for lightweight computational Grids, Future Generation Computer System 23, 219-240. doi:10.1016/j.future.2006.05.008 (2007). [CrossRef] [Google Scholar]
  10. SLURM: https://slurm.schedmd.com/overview.html [Google Scholar]
  11. Spanish Supercomputing Network: http://www.res.es/en [Google Scholar]
  12. C. Acosta-Silva et al., Exploitation of the MareNostrum 4 HPC using ARC-CE, EPJ Web Conf. 251, (2021). [Google Scholar]
  13. E. Gallas et al., Deployment and Operation of the ATLAS Event Index for LHC Run 3, these proceedings (2023). [Google Scholar]
  14. D. Barberis et al., The ATLAS EventIndex: A BigData Catalogue for ALL ATLAS Experiment Events, Comput.Softw.Big Sci. 7, (2023). [Google Scholar]
  15. C. Garcia Montoro et al., HBase/Phoenix-based Data Collection and Storage for the ATLAS EventIndex, EPJ Web of Conferences, (2024). [Google Scholar]
  16. I. Bird et al., Architecture and prototype of a WLCG data lake for HL-LHC, EPJ Web Conf. 214, (2019). [Google Scholar]
  17. D. Thain, et al., Distributed Computing in Practice: The Condor Experience Concurrency and computation: practice and experience, 17(2-4) 323-356. DOI: https://doi.org/10.1002/cpe.938 (2004). [Google Scholar]
  18. Dask: https://www.dask.org [Google Scholar]
  19. N. Smith, et al., Coffea Columnar Object Framework For Effective Analysis, EPJ Web Conf. 245. DOI: 10.1051/epjconf/202024506012 (2020). [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  20. B. Granger, et al., Jupyter: Thinking and Storytelling With Code and Data, Computing in Science & Engineering 23. DOI: 10.1109/MCSE.2021.3059263 (2021). [Google Scholar]
  21. J. Blomer et al., Delivering LHC Software to HPC Compute Elements with CernVM-FS, In Proceedings of the first international workshop on Network-aware data management 49-56. DOI: 10.1145/2110217.2110225 (2011). [Google Scholar]
  22. Jupyter: https://jupyter.org [Google Scholar]
  23. KORE: https://kore.ific.uv.es [Google Scholar]
  24. A. Delgado Peris et al., Spanish Analysis Facility at CIEMAT, EPJ Web of Conf. 295. DOI: 10.1051/epjconf/202429507045 (2024). [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  25. ARTEMISA: https://artemisa.ific.uv.es/web/ [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.