Open Access
| Issue |
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
|
|
|---|---|---|
| Article Number | 01119 | |
| Number of page(s) | 8 | |
| DOI | https://doi.org/10.1051/epjconf/202533701119 | |
| Published online | 07 October 2025 | |
- F. An et al. (JUNO), Neutrino physics with JUNO, J. Phys. G 43, 030401 (2016). 10.1088/0954-3899/43/3/030401 [Google Scholar]
- A. Abusleme et al. (JUNO), JUNO physics and detector, Prog. Part. Nucl. Phys. 123, 103927 (2022). 10.1016/j.ppnp.2021.103927 [CrossRef] [Google Scholar]
- A. Abusleme et al. (JUNO), Potential to identify neutrino mass ordering with reactor antineutrinos at JUNO, Chin. Phys. C 49, 033104 (2025). 10.1088/1674-1137/ad7f3e [Google Scholar]
- A. Abusleme et al. (JUNO), Sub-percent precision measurement of neutrino oscillation parameters with JUNO, Chin. Phys. C 46, 123001 (2022). 10.1088/1674-1137/ac8bc9 [Google Scholar]
- A. Abusleme et al. (JUNO), Prediction of Energy Resolution in the JUNO Experiment, Chin. Phys. C 49, 013003 (2025). 10.1088/1674-1137/ad83aa [Google Scholar]
- T. Lin et al., Simulation software of the JUNO experiment, Eur. Phys. J. C 83, 382 (2023). 10.1140/epjc/s10052-023-11514-x [CrossRef] [Google Scholar]
- Z. Qian et al., Vertex and energy reconstruction in JUNO with machine learning methods, Nucl. Instrum. Meth. A 1010, 165527 (2021). 10.1016/j.nima.2021.165527 [Google Scholar]
- A. Gavrikov, Y. Malyshkin, F. Ratnikov, Energy reconstruction for large liquid scintillator detectors with machine learning techniques: aggregated features approach, Eur. Phys. J. C 82, 1021 (2022). 10.1140/epjc/s10052-022-11004-6 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Z. Yang et al., First attempt of directionality reconstruction for atmospheric neutrinos in a large homogeneous liquid scintillator detector, Phys. Rev. D 109, 052005 (2024). 10.1103/PhysRevD.109.052005 [Google Scholar]
- A. Gavrikov et al., Interpretable machine learning approach for electron antineutrino selection in a large liquid scintillator detector, Phys. Lett. B 860, 139141 (2025). 10.1016/j.physletb.2024.139141 [Google Scholar]
- W. Jiang, G. Huang, Z. Liu, W. Luo, L. Wen, J. Luo, Machine-learning based photon counting for PMT waveforms and its application to the improvement of the energy resolution in large liquid scintillator detectors, Eur. Phys. J. C 85, 69 (2025). 10.1140/epjc/s10052-024-13724-3 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- A. Abusleme et al. (JUNO), Calibration Strategy of the JUNO Experiment, JHEP 03, 004 (2021). 10.1007/JHEP03(2021)004 [Google Scholar]
- J. Goodman, J. Weare, Ensemble samplers with affine invariance, Commun. Appl. Math. Comput. Sc. 5, 65 (2010). 10.2140/camcos.2010.5.65 [Google Scholar]
- D. Foreman-Mackey, D.W. Hogg, D. Lang, J. Goodman, emcee: the mcmc hammer, Publications of the Astronomical Society of the Pacific 125, 306 (2013). 10.1086/670067 [Google Scholar]
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention Is All You Need (2017), arXiv:1706.03762, https://arxiv.org/abs/1706.03762 [Google Scholar]
- I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative Adversarial Networks (2014), arXiv:1406.2661, https://arxiv.org/abs/1406.2661 [Google Scholar]
- I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved Training of Wasserstein GANs (2017), arXiv:1704.00028, https://arxiv.org/abs/1704.00028 [Google Scholar]
- D.J. Rezende, S. Mohamed, Variational Inference with Normalizing Flows (2015), arXiv:1505.05770, https://arxiv.org/abs/1505.05770 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

