Open Access
| Issue |
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
|
|
|---|---|---|
| Article Number | 01124 | |
| Number of page(s) | 8 | |
| DOI | https://doi.org/10.1051/epjconf/202533701124 | |
| Published online | 07 October 2025 | |
- CMS Offline Software and Computing, CMS Phase-2 Computing Model: Update Document (2022), https://cds.cern.ch/record/2815292 [Google Scholar]
- C. Bierlich, S. Chakraborty, N. Desai, L. Gellersen, I. Helenius, P. Ilten, L. Lönnblad, S. Mrenna, S. Prestel, C.T. Preuss et al., A comprehensive guide to the physics and usage of PYTHIA 8.3 (2022), 2203.11601 [Google Scholar]
- S. Agostinelli et al., Geant4—a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8 [Google Scholar]
- F. Vaselli, F. Cattafesta, P. Asenov, A. Rizzi, End-to-end simulation of particle physics events with flow matching and generator oversampling, Machine Learning: Science and Technology 5, 035007 (2024). 10.1088/2632-2153/ad563c [Google Scholar]
- J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, M. Selvaggi, Delphes 3: a modular framework for fast simulation of a generic collider experiment (2014), http://dx.doi.org/10.1007/JHEP02(2014)057 [Google Scholar]
- C. Chen, O. Cerri, T.Q. Nguyen, J.R. Vlimant, M. Pierini, Data augmentation at the lhc through analysis-specific fast simulation with deep learning (2020), 2010.01835 [Google Scholar]
- G. Papamakarios, E. Nalisnick, D.J. Rezende, S. Mohamed, B. Lakshminarayanan, Normalizing Flows for Probabilistic Modeling and Inference (2021), 1912.02762 [Google Scholar]
- N. Soybelman, N. Kakati, L. Heinrich, F.A.D. Bello, E. Dreyer, S. Ganguly, E. Gross, M. Kado, J. Shlomi, Set-conditional set generation for particle physics, Machine Learning: Science and Technology 4, 045036 (2023). 10.1088/2632-2153/ad035b [Google Scholar]
- D. Kobylianskii, N. Soybelman, N. Kakati, E. Dreyer, B. Nachman, E. Gross, Advancing set-conditional set generation: Diffusion models for fast simulation of reconstructed particles, Phys. Rev. D 110, 092013 (2024). 10.1103/PhysRevD.110.092013 [Google Scholar]
- R. Kansal, J. Duarte, H. Su, B. Orzari, T. Tomei, M. Pierini, M. Touranakou, J.R. Vlimant, D. Gunopulos, Particle cloud generation with message passing generative adversarial networks (2022), 2106.11535, https://arxiv.org/abs/2106.11535 [Google Scholar]
- F. Vaselli, A. Rizzi, F. Cattafesta, G. Cicconofri (CMS), Tech. rep., CERN, Geneva (2023), https://cds.cern.ch/record/2858890 [Google Scholar]
- R. Kansal, A. Li, J. Duarte, N. Chernyavskaya, M. Pierini, B. Orzari, T. Tomei, Evaluating generative models in high energy physics, Physical Review D 107 (2023). 10.1103/physrevd.107.076017 [Google Scholar]
- CMS, Identification of heavy-flavour jets with the cms detector in pp collisions at 13 tev, Journal of Instrumentation 13, P05011–P05011 (2018). 10.1088/1748-0221/13/05/p05011 [Google Scholar]
- M. Turisini, G. Amati, M. Cestari, LEONARDO: A Pan-European Pre-Exascale Supercomputer for HPC and AI Applications (2023), 2307.16885 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

