Open Access
Issue
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
Article Number 01147
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/202533701147
Published online 07 October 2025
  1. D. Britton, S. Campana & B. Panzer-Stradel, A holistic study of the WLCG energy needs for the LHC scientific program, EPJ Web of Conferences 295, 04001 (2024). https://doi. org/10.1051/epjconf/202429504001 [Google Scholar]
  2. R. V. Aroca & L. M. G. Gonçalves, Towards green data centers: A comparison of x86 and ARM architectures power efficiency, J. Parallel Distrib. Comput. 72, 1770–1780 (2012). https://doi.org/10.1016/j.jpdc.2012.08.005 [Google Scholar]
  3. E. Blem, J. Menon & K. Sankaralingam, Power struggles: Revisiting the RISC vs. CISC debate on contemporary ARM and x86 architectures, 2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA), 1-12 (2013). https://doi.org/10.1109/HPCA.2013.6522302 [Google Scholar]
  4. J. Maqbool, S. Oh & G. C. Fox, Evaluating ARM HPC clusters for scientific workloads, Concurrency Computation: Practice and Experience 27, 5390-5410 (2015). https://onlinelibrary.wiley.com/doi/10.1002/cpe.3602 [Google Scholar]
  5. K. Gupta & T. Sharma, Changing trends in computer architecture: A comprehensive analysis of ARM and x86 processors, International Journal of Scientific Research in Computer Science, Engineering and Information Technology 7, 619-631 (2021). https://ijsrcseit.com/paper/CSEIT2173188.pdf [Google Scholar]
  6. D. Kumar et al., Performance evaluation of ARM-based versus x86-based processors in high performance computing clusters, Journal of Independent Studies and Research Computing 21, 32-41 (2023). https://jisrc.szabist.edu.pk/ojs/index.php/jisrc/article/view/58/146 [Google Scholar]
  7. Apple, Apple unleashes M1, Press Release, (2020). https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/ [Google Scholar]
  8. B. Funk, Mac mini 2020 review: Apple M1 silicon performance deep dive, HotHardware, (2020). https://hothardware.com/reviews/mac-mini-2020-apple-silicon-m1 [Google Scholar]
  9. J. Salter, Hands-on with the Apple M1 - a seriously fast x86 competitor, Ars Technica, (2020). https://arstechnica.com/gadgets/2020/11/hands-on-with-the-apple-m1-a-seriously-fast-x86-competitor/ [Google Scholar]
  10. E. Simili et al., Power efficiency in HEP (x86 vs. ARM), To be published in the Proceedings of the 21st International Workshop on Advanced Computing and Analysis Techniques (ACAT) in Physics Research Conference, (2022). https://indico.cern.ch/event/1106990/papers/4991256/files/11720-PoW_ESimili.pdf [Google Scholar]
  11. E. Simili et al., ARMing HEP for the future, EPJ Web of Conferences 295, 11007 (2024). https://www.epj-conferences.org/articles/epjconf/pdf/2024/05/epjconf_ chep2024_11007.pdf [Google Scholar]
  12. AMD, EPYC 7742 Datasheet. https://www.amd.com/en/support/downloads/drivers. html/processors/epyc/epyc-7002-series/amd-epyc-7742.html#amd_support_product_ spec [Google Scholar]
  13. AMD, EPYC 7702 Datasheet. https://www.amd.com/en/support/downloads/drivers. html/processors/epyc/epyc-7002-series/amd-epyc-7702.html#amd_support_product_ spec [Google Scholar]
  14. Ampere, Ampere Altra M128-30 Datasheet. https://amperecomputing.com/assets/Altra_Max_Rev_A1_DS_v1_25_20240130_73cfcc518a_4705c00046.pdf [Google Scholar]
  15. HEPiX Benchmarking Working Group. https://w3.hepix.org/benchmarking.html [Google Scholar]
  16. N. Szczepanek et al., HEP Benchmark Suite: Enhancing efficiency and sustainability in worldwide LHC computing infrastructures, arXiv, 2408.12445 (2024). https://arxiv.org/pdf/2408.12445 [Google Scholar]
  17. D. Laurie, IPMItools: Intelligent Platform Management Interface (2024), https://github. com/ipmitool/ipmitool [Google Scholar]
  18. K. Kozik, Power consumption time series: Comparison of various aggregation metrics, Presentation, (2024). https://indico.cern.ch/event/1433496/contributions/6031430/attachments/2917567/5120217/comparison_of_various_aggregation_metrics_kacper_ kozik.pdf [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.