Open Access
Issue
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
Article Number 01165
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/202533701165
Published online 07 October 2025
  1. R. Brun, F. Rademakers, Root—an object oriented data analysis framework, Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment 389, 81 (1997). [Google Scholar]
  2. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand et al., Geant4—a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8 [CrossRef] [Google Scholar]
  3. S. Chatrchyan, G. Hmayakyan, V. Khachatryan, A.M. Sirunyan, R. Adolphi, G. Anagnostou, R. Brauer, W. Braunschweig, H. Esser, L. Feld et al. (CMS), The CMS experiment at the CERN LHC. The Compact Muon Solenoid experiment, JINST 3, S08004 (2008), also published by CERN Geneva in 2010. 10.1088/1748-0221/3/08/S08004 [Google Scholar]
  4. C. Lattner, V. Adve, LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation, in Proceedings of the International Symposium on Code Generation and Optimization: Feedback-Directed and Runtime Optimization (IEEE Computer Society, USA, 2004), CGO ’04, p. 75, ISBN 0769521029 [Google Scholar]
  5. V. Vassilev, P. Canal, A. Naumann, L. Moneta, P. Russo, Cling – The New Interactive Interpreter for ROOT 6 (IOP Publishing, 2012), Vol. 396, p. 052071, https://iopscience.iop.org/article/10.1088/1742-6596/396/5/052071/pdf [Google Scholar]
  6. D. Piparo, ROOT6: a Quest for Performance, J. Phys.: Conf. Ser. 664, 062049 (2015). 10.1088/1742-6596/664/6/062049 [Google Scholar]
  7. C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith et al., Array programming with NumPy, Nature 585, 357 (2020). 10.1038/s41586-020-2649-2 [CrossRef] [PubMed] [Google Scholar]
  8. W. Jakob, J. Rhinelander, D. Moldovan and others, pybind11 – Seamless operability between C++11 and Python (2017) [Google Scholar]
  9. W. Lavrijsen, Python in the Cling World, in Journal of Physics: Conference Series (IOP Publishing, 2015), Vol. 664, p. 062029 [Google Scholar]
  10. W.T. Lavrijsen, A. Dutta, High-Performance Python-C++ Bindings with PyPy and Cling, in 2016 6th Workshop on Python for High-Performance and Scientific Computing (PyHPC) (2016), pp. 27–35 [Google Scholar]
  11. NVIDIA, P. Vingelmann, F.H. Fitzek, Cuda, release: 10.2.89 (2020), https://developer.nvidia.com/cuda-toolkit [Google Scholar]
  12. J. Bezanson, A. Edelman, S. Karpinski, V.B. Shah, Julia: A fresh approach to numerical computing, SIAM Review 59, 65 (2017). 10.1137/141000671 [CrossRef] [Google Scholar]
  13. L.T. Van Binsbergen, M. Verano Merino, P. Jeanjean, T. Van Der Storm, B. Combemale, O. Barais, A principled approach to REPL interpreters, in Proceedings of the 2020 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software (2020), pp. 84–100 [Google Scholar]
  14. LLVM, Clang-Repl c++ interpreter (2021), https://clang.llvm.org/docs/ClangRepl.html [Google Scholar]
  15. B. Kundu, V. Vassilev, W. Lavrijsen, Efficient and accurate automatic python bindings with cppyy cling (2023). 10.48550/arXiv.2304.02712 [Google Scholar]
  16. Compiler-Research, QuantStack, xeus-cpp a jupyter kernel for c++ (2023), https://github.com/compiler-research/xeus-cpp [Google Scholar]
  17. R. Nishino, S.H.C. Loomis, Cupy: A numpy-compatible library for nvidia gpu calculations, 31st confernce on neural information processing systems 151 (2017). [Google Scholar]
  18. V. Vassilev, A. Jomy, B. Kundu, A. Penev, et al. (Compiler-Research), compilerresearch/cppinterop: Cppinterop version 1.6.0 (2025), https://doi.org/10.5281/zenodo.14946950 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.