Open Access
| Issue |
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
|
|
|---|---|---|
| Article Number | 01265 | |
| Number of page(s) | 8 | |
| DOI | https://doi.org/10.1051/epjconf/202533701265 | |
| Published online | 07 October 2025 | |
- T. Abe et al., Belle II Technical Design Report (2010), 1011.0352 [Google Scholar]
- T. Keck et al., The Full Event Interpretation, Computing and Software for Big Science (2019), 1807.08680. [Google Scholar]
- I. Adachi et al. (Belle-II), Evidence for B+→K+νν¯ decays, Phys. Rev. D 109, 112006 (2024), 2311.14647. 10.1103/PhysRevD.109.112006 [CrossRef] [Google Scholar]
- J. Kahn et al., Learning Tree Structures from Leaves For Particle Decay Reconstruction, Machine Learning: Science and Technology 3, 035012 (2022), arXiv:2208.14924, 2208.14924. [CrossRef] [Google Scholar]
- I. Tsaklidis, P. Goldenzweig, I. Ripp-Baudot, J. Kahn, G. Dujany, Ph.D. thesis, Université de Strasbourg, Strasbourg and Karlsruhe (2020), presented on 19/06/2020 [Google Scholar]
- L. Reuter, Master’s thesis, Karlsruhe Institute of Technology (KIT) (2022) [Google Scholar]
- P.W. Battaglia et al., Relational inductive biases, deep learning, and graph networks (2018), 1806.01261. [Google Scholar]
- K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition (2015), 1512.03385. [Google Scholar]
- M. Fey, J.E. Lenssen, Fast graph representation learning with pytorch geometric (2019), 1903.02428, https://arxiv.org/abs/1903.02428 [Google Scholar]
- D.A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep network learning by exponential linear units (elus) (2016), 1511.07289 [Google Scholar]
- G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors (2012), 1207.0580 [Google Scholar]
- S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015), 1502.03167. [Google Scholar]
- D.P. Kingma, J. Ba, Adam: A method for stochastic optimization (2017), 1412.6980. [Google Scholar]
- Cross-entropy Loss, https://pytorch.org/docs/stable/generated/torch. nn.CrossEntropyLoss.html [Google Scholar]
- J. García Pardiñas, M. Calvi, J. Eschle, A. Mauri, S. Meloni, M. Mozzanica, N. Serra, Gnn for deep full event interpretation and hierarchical reconstruction of heavy-hadron decays in proton–proton collisions, Computing and Software for Big Science 7, 12 (2023). 10.1007/s41781-023-00107-8 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

