Open Access
| Issue |
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
|
|
|---|---|---|
| Article Number | 01282 | |
| Number of page(s) | 8 | |
| DOI | https://doi.org/10.1051/epjconf/202533701282 | |
| Published online | 07 October 2025 | |
- M. Franz, P. Zurita, M. Diefenthaler, W. Mauerer, Co-Design of Quantum Hardware and Algorithms in Nuclear and High Energy Physics, EPJ Web of Conferences 295, 12002 (2024). 10.1051/epjconf/202429512002 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018). 10.22331/q-2018-08-06-79 [CrossRef] [Google Scholar]
- A.I. Pakhomchik, S. Yudin, M.R. Perelshtein, A. Alekseyenko, S. Yarkoni, Solving workflow scheduling problems with QUBO modeling (2022). 10.48550/arXiv.2205.04844 [Google Scholar]
- H. Okawa, Q.G. Zeng, X.Z. Tao, M.H. Yung, Quantum-Annealing-Inspired Algorithms for Track Reconstruction at High-Energy Colliders, Computing and Software for Big Science 8, 16 (2024). 10.1007/s41781-024-00126-z [Google Scholar]
- A. Zlokapa, A. Anand, J.R. Vlimant, J.M. Duarte, J. Job, D. Lidar, M. Spiropulu, Charged particle tracking with quantum annealing-inspired optimization, Quantum Machine Intelligence 3, 27 (2021). 10.1007/s42484-021-00054-w [Google Scholar]
- M. Kiehn, S. Amrouche, P. Calafiura, V. Estrade, S. Farrell, C. Germain, V. Gligorov, T. Golling, H. Gray, I. Guyon et al., The trackml high-energy physics tracking challenge on kaggle, EPJ Web of Conferences 214, 06037 (2019). 10.1051/epjconf/201921406037 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- T. Albash, D.A. Lidar, Adiabatic quantum computation, Rev. Mod. Phys. 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [CrossRef] [Google Scholar]
- F. Bapst, W. Bhimji, P. Calafiura, H. Gray, W. Lavrijsen, L. Linder, A. Smith, A Pattern Recognition Algorithm for Quantum Annealers, Computing and Software for Big Science 4 (2019). 10.1007/s41781-019-0032-5 [Google Scholar]
- L. Zhou, S.T. Wang, S. Choi, H. Pichler, M.D. Lukin, Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices, Physical Review X 10, 021067 (2020). 10.1103/PhysRevX.10.021067 [Google Scholar]
- W. Mauerer, S. Scherzinger, 1-2-3 Reproducibility for Quantum Software Experiments, in IEEE Int. Conf. on SW Analysis, Evolution and Reengineering (2022), pp. 1247–1248 [Google Scholar]
- M. Franz, M. Strobl, Reproduction package for “From hope to heuristic: Realistic runtime estimates for quantum optimisation in NHEP” (2025), https://doi.org/10.5281/zenodo.14921650 [Google Scholar]
- A. Javadi-Abhari, M. Treinish, K. Krsulich, C.J. Wood, J. Lishman, J. Gacon, S. Martiel, P.D. Nation, L.S. Bishop, A.W. Cross et al., Quantum computing with Qiskit (2024). 10.48550/arXiv.2405.08810 [Google Scholar]
- A. Lucas, Ising formulations of many NP problems, Frontiers in Physics 2 (2014). 10.3389/fphy.2014.00005 [Google Scholar]
- D-Wave, D-Wave Advantage Quantum Computer (2025), https://dwavesys.com [Google Scholar]
- E. Farhi, J. Goldstone, S. Gutmann, A Quantum Approximate Optimization Algorithm (2014). 10.48550/arXiv.1411.4028 [Google Scholar]
- L. Bittel, M. Kliesch, Training Variational Quantum Algorithms Is NP-Hard, Physical Review Letters 127, 120502 (2021). 10.1103/PhysRevLett.127.120502 [Google Scholar]
- K. Bharti, A. Cervera-Lierta, T.H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J.S. Kottmann, T. Menke et al., Noisy intermediate-scale quantum algorithms, Rev. Mod. Phys. 94, 015004 (2022). 10.1103/RevModPhys.94.015004 [CrossRef] [Google Scholar]
- J.A. Montanez-Barrera, K. Michielsen, Towards a universal QAOA protocol: Evidence of a scaling advantage in solving some combinatorial optimization problems (2024). 10.48550/arXiv.2405.09169 [Google Scholar]
- M.J.D. Powell, A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation (1994), ISBN 978-90-481-4358-0 978-94-015-8330-5, http://link.springer.com/10.1007/978-94-015-8330-5_4 [Google Scholar]
- M. Periyasamy, A. Plinge, C. Mutschler, D.D. Scherer, W. Mauerer, Guided-SPSA: Simultaneous Perturbation Stochastic Approximation Assisted by the Parameter Shift Rule, in IEEE Int. Conf. on Quantum Computing and Engineering (2024), Vol. 01, pp. 1504–1515 [Google Scholar]
- D.J. Egger, J. Mareček, S. Woerner, Warm-starting quantum optimization, Quantum 5, 479 (2021). 10.22331/q-2021-06-17-479 [Google Scholar]
- ATLAS Collaboration, Fast Track Reconstruction for HL-LHC (2019). [Google Scholar]
- A. Bocci, M. Kortelainen, V. Innocente, F. Pantaleo, M. Rovere, Heterogeneous reconstruction of tracks and primary vertices with the CMS pixel tracker (2020). 10.48550/arXiv.2008.13461 [Google Scholar]
- C. Tüysüz, F. Carminati, B. Demirköz, D. Dobos, F. Fracas, K. Novotny, K. Potamianos, S. Vallecorsa, J.R. Vlimant, Particle Track Reconstruction with Quantum Algorithms, EPJ Web of Conferences 245, 09013 (2020). 10.1051/epjconf/202024509013 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- T. Schwägerl, C. Issever, K. Jansen, T.J. Khoo, S. Kühn, C. Tüysüz, H. Weber, Particle track reconstruction with noisy intermediate-scale quantum computers (2023). 10.48550/arXiv.2303.13249 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

