Open Access
Issue
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
Article Number 01340
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/202533701340
Published online 07 October 2025
  1. M. Ernst, P. Fuhrmann, M. Gasthuber, T. Mkrtchyan, C. Waldman, dcache, a distributed storage data caching system, Journal of Physics: Conference Series (2001) [Google Scholar]
  2. G. Behrmann, P. Fuhrmann, M. Grønager, J. Kleist, A distributed storage system with dCache, Journal of Physics: Conference Series 119 (2008) [Google Scholar]
  3. Y. Wang, K. Wu, A. Sim, S. Yoo, S. Misawa, Access Patterns to Disk Cache for Large Scientific Archive, in ACM International Workshop on Systems and Network Telemetry and Analytics (2020), pp. 37–40 [Google Scholar]
  4. P.K. Patra, M. Sahu, S. Mohapatra, R.K. Samantray, File access prediction using neural networks, IEEE Transactions on Neural Networks 21, 869 (2010) [CrossRef] [PubMed] [Google Scholar]
  5. K. Qi, S. Han, C. Yang, Learning a hybrid proactive and reactive caching policy in wireless edge under dynamic popularity, IEEE Access 7, 120788 (2019) [Google Scholar]
  6. R.W. Watson, R.A. Coyne, The Parallel I/O Architecture of the High-Performance Storage System (HPSS), in Proceedings of the 14th IEEE Symposium on Mass Storage Systems (1995), ISBN 0818670649 [Google Scholar]
  7. J. Bellavita, C.S. amd Kesheng Wu, A. Sim, S. Yoo, H. Ito, V. Garonne, E. Lancon, Understanding Data Access Patterns for dCache System, in 26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023) (2023) [Google Scholar]
  8. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., Pytorch: An imperative style, high-performance deep learning library, CoRR abs/1912.01703 (2019), 1912.01703 [Google Scholar]
  9. T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, CoRR abs/1603.02754 (2016), 1603.02754 [Google Scholar]
  10. D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in International Conference on Learning Representations (ICLR 2015) (2015) [Google Scholar]
  11. T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A Next-generation Hyperparameter Optimization Framework, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’19) (2019), p. 2623–2631, https://optuna.org [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.